Suppr超能文献

化学计量动态自催化在稀释化学反应网络中的应用

Stoechiometric and dynamical autocatalysis for diluted chemical reaction networks.

机构信息

Institut Elie Cartan, Laboratoire Associé au CNRS UMR 7502, Université de Lorraine, B.P. 239, 54506, Vandœuvre-lès-Nancy Cedex, France.

UMR CNRS-ESPCI Chimie Biologie Innovation 8231, ESPCI Paris, Université Paris Sciences Lettres, 10 rue Vauquelin, 75005, Paris, France.

出版信息

J Math Biol. 2022 Sep 7;85(3):26. doi: 10.1007/s00285-022-01798-0.

Abstract

Autocatalysis underlies the ability of chemical and biochemical systems to replicate. Recently, Blokhuis et al. (PNAS 117(41):25230-25236, 2020) gave a stoechiometric definition of autocatalysis for reaction networks, stating the existence of a combination of reactions such that the balance for all autocatalytic species is strictly positive, and investigated minimal autocatalytic networks, called autocatalytic cores. By contrast, spontaneous autocatalysis-namely, exponential amplification of all species internal to a reaction network, starting from a diluted regime, i.e. low concentrations-is a dynamical property. We introduce here a topological condition (Top) for autocatalysis, namely: restricting the reaction network description to highly diluted species, we assume existence of a strongly connected component possessing at least one reaction with multiple products (including multiple copies of a single species). We find this condition to be necessary and sufficient for stoechiometric autocatalysis. When degradation reactions have small enough rates, the topological condition further ensures dynamical autocatalysis, characterized by a strictly positive Lyapunov exponent giving the instantaneous exponential growth rate of the system. The proof is generally based on the study of auxiliary Markov chains. We provide as examples general autocatalytic cores of Type I and Type III in the typology of Blokhuis et al. (PNAS 117(41):25230-25236, 2020) . In a companion article (Unterberger in Dynamical autocatalysis for autocatalytic cores, 2021), Lyapunov exponents and the behavior in the growth regime are studied quantitatively beyond the present diluted regime .

摘要

自催化是化学和生化系统复制的基础。最近,Blokhuis 等人(PNAS 117(41):25230-25236, 2020)为反应网络中的自催化给出了一个化学计量学的定义,指出存在一组反应,使得所有自催化物种的平衡严格为正,并研究了最小自催化网络,称为自催化核心。相比之下,自发自催化——即从稀释状态(即低浓度)开始,所有物种在反应网络内部的指数放大——是一种动力学性质。我们在这里引入了一个自催化的拓扑条件(Top),即:将反应网络描述限制在高度稀释的物种上,我们假设存在一个具有至少一个具有多个产物的反应(包括一个物种的多个副本)的强连通分量。我们发现这个条件对于化学计量学自催化是必要和充分的。当降解反应的速率足够小,拓扑条件进一步确保了动力学自催化,其特征是存在一个严格正的李雅普诺夫指数,给出了系统的瞬时指数增长率。证明通常基于辅助马尔可夫链的研究。我们以 Blokhuis 等人(PNAS 117(41):25230-25236, 2020)的分类中的一般 I 型和 III 型自催化核心为例。在一篇伴随的文章(Unterberger 在自催化核心的动力学自催化,2021)中,李雅普诺夫指数和在增长阶段的行为在目前的稀释阶段之外进行了定量研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验