Pross Addy, Pascal Robert
Department of Chemistry, Ben-Gurion University of the Negev, Be'er-Sheva 8410501, Israel.
PIIM, Institut Origines, Aix-Marseille Université-CNRS, Service 232, Saint Jérôme, Ave Escadrille Normandie Niemen, 13013 Marseille, France.
Life (Basel). 2023 Nov 6;13(11):2171. doi: 10.3390/life13112171.
This work addresses the kinetic requirements for compensating the entropic cost of self-organization and natural selection, thereby revealing a fundamental principle in biology. Metabolic and evolutionary features of life cannot therefore be separated from an origin of life perspective. Growth, self-organization, evolution and dissipation processes need to be metabolically coupled and fueled by low-entropy energy harvested from the environment. The evolutionary process requires a reproduction cycle involving out-of-equilibrium intermediates and kinetic barriers that prevent the reproductive cycle from proceeding in reverse. Model analysis leads to the unexpectedly simple relationship that the system should be fed energy with a potential exceeding a value related to the ratio of the generation time to the transition state lifetime, thereby enabling a process mimicking natural selection to take place. Reproducing life's main features, in particular its Darwinian behavior, therefore requires satisfying constraints that relate to time and energy. Irreversible reaction cycles made only of unstable entities reproduce some of these essential features, thereby offering a physical/chemical basis for the possible emergence of autonomy. Such Emerging Autonomous Systems (EASs) are found to be capable of maintaining and reproducing their kind through the transmission of a stable kinetic state, thereby offering a physical/chemical basis for what could be deemed an epigenetic process.
这项工作探讨了补偿自组织和自然选择的熵成本的动力学要求,从而揭示了生物学中的一个基本原理。因此,从生命起源的角度来看,生命的代谢和进化特征是不可分割的。生长、自组织、进化和耗散过程需要通过从环境中获取的低熵能量进行代谢耦合并提供动力。进化过程需要一个涉及非平衡中间体和动力学障碍的繁殖循环,以防止繁殖循环逆向进行。模型分析得出了一个出人意料的简单关系,即系统应以超过与生成时间与过渡态寿命之比相关的值的势能获取能量,从而使模拟自然选择的过程得以发生。因此,重现生命的主要特征,尤其是其达尔文式行为,需要满足与时间和能量相关的限制条件。仅由不稳定实体构成的不可逆反应循环重现了其中一些基本特征,从而为自主性的可能出现提供了物理/化学基础。人们发现,这种新兴自主系统(EAS)能够通过稳定动力学状态的传递来维持和繁殖自身种类,从而为可被视为表观遗传过程的现象提供了物理/化学基础。