Gulliver Laboratory, UMR CNRS 7083, Paris Sciences et Lettres University, Paris F-75231, France;
Laboratoire de Biochimie, UMR CNRS 8231, Chimie Biologie et Innovation, Ecole Supérieure de Physique et de Chimie Industrielles de la ville de Paris, PSL University, Paris F-75231, France.
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25230-25236. doi: 10.1073/pnas.2013527117. Epub 2020 Sep 28.
Autocatalysis is essential for the origin of life and chemical evolution. However, the lack of a unified framework so far prevents a systematic study of autocatalysis. Here, we derive, from basic principles, general stoichiometric conditions for catalysis and autocatalysis in chemical reaction networks. This allows for a classification of minimal autocatalytic motifs called cores. While all known autocatalytic systems indeed contain minimal motifs, the classification also reveals hitherto unidentified motifs. We further examine conditions for kinetic viability of such networks, which depends on the autocatalytic motifs they contain and is notably increased by internal catalytic cycles. Finally, we show how this framework extends the range of conceivable autocatalytic systems, by applying our stoichiometric and kinetic analysis to autocatalysis emerging from coupled compartments. The unified approach to autocatalysis presented in this work lays a foundation toward the building of a systems-level theory of chemical evolution.
自动催化对于生命起源和化学演化至关重要。然而,迄今为止缺乏统一的框架,阻碍了对自动催化的系统研究。在这里,我们从基本原理出发,推导出化学反应网络中催化和自动催化的一般化学计量条件。这允许对称为核心的最小自动催化模体进行分类。虽然所有已知的自动催化系统确实都包含最小模体,但分类还揭示了迄今为止尚未被识别的模体。我们进一步研究了这些网络的动力学可行性条件,这取决于它们包含的自动催化模体,并且内部催化循环显著增加了这种可行性。最后,我们通过将我们的化学计量和动力学分析应用于从耦合隔室中出现的自动催化,展示了这种框架如何扩展可想象的自动催化系统的范围。本工作中提出的自动催化统一方法为建立化学演化的系统理论奠定了基础。