Suppr超能文献

了解情况:意识和瞬态刺激-反应绑定的检索在选择性偶然性学习中的作用。

Being in the Know: The Role of Awareness and Retrieval of Transient Stimulus-Response Bindings in Selective Contingency Learning.

作者信息

Arunkumar Mrudula, Rothermund Klaus, Kunde Wilfried, Giesen Carina G

机构信息

Department of General Psychology II, Friedrich Schiller University Jena, DE.

Experimental and Cognitive Psychology, Julius-Maximillians-University Würzburg, DE.

出版信息

J Cogn. 2022 Jun 9;5(1):36. doi: 10.5334/joc.227. eCollection 2022.

Abstract

Previous studies demonstrated that contingency learning can be both (a) unaware (Schmidt et al., 2007), and (b) explained in terms of an automatic retrieval of stimulus-response bindings from the last episode in which the cue stimulus has been presented (Giesen et al., 2020; Schmidt et al., 2020). We investigated whether learning is selective in a contingency learning paradigm in which pairs of salient and nonsalient cues that were equally predictive of responses to targets (digits) were presented simultaneously. In two pre-registered experiments (total N = 137), we found stronger contingency learning for salient compared to non-salient cues. Transient stimulus-response binding and retrieval processes did not contribute to these selective learning effects in contingency learning, which were instead driven by contingency awareness. Our findings indicate that under conditions of high saliency, contingency learning is mediated by conscious rule detection for which retrieval of transient stimulus-response bindings is irrelevant.

摘要

先前的研究表明,偶然性学习既可以是(a)无意识的(施密特等人,2007年),也可以(b)根据从上次呈现提示刺激的事件中自动检索刺激-反应绑定来解释(吉森等人,2020年;施密特等人,2020年)。我们研究了在一种偶然性学习范式中学习是否具有选择性,在该范式中,对目标(数字)反应具有同等预测性的显著和非显著线索对同时呈现。在两项预先注册的实验(总样本量N = 137)中,我们发现与非显著线索相比,显著线索的偶然性学习更强。短暂的刺激-反应绑定和检索过程对偶然性学习中的这些选择性学习效应没有贡献,相反,这些效应是由偶然性意识驱动的。我们的研究结果表明,在高显著性条件下,偶然性学习是由有意识的规则检测介导的,而短暂刺激-反应绑定的检索与之无关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dabb/9400625/ef5aeb644b13/joc-5-1-227-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验