文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

核心免疫细胞浸润特征可识别分子亚型,并促进皮肤黑色素瘤的精确检查点免疫治疗。

Core immune cell infiltration signatures identify molecular subtypes and promote precise checkpoint immunotherapy in cutaneous melanoma.

机构信息

Department of Medicine, Harvard Medical School, Boston, MA, United States.

Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, China.

出版信息

Front Immunol. 2022 Aug 22;13:914612. doi: 10.3389/fimmu.2022.914612. eCollection 2022.


DOI:10.3389/fimmu.2022.914612
PMID:36072600
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9441634/
Abstract

Yutao Wang, China Medical University, ChinaThe tumor microenvironment (TME) has been shown to impact the prognosis of tumors in patients including cutaneous melanoma (CM); however, not all components of TME are important. Given the aforementioned situation, the functional immune cell contents correlated with CM patient prognosis are needed to optimize present predictive models and reflect the overall situation of TME. We developed a novel risk score named core tumor-infiltrating immune cell score (cTICscore), which showed certain advantages over existing biomarkers or TME-related signatures in predicting the prognosis of CM patients. Furthermore, we explored a new gene signature named cTILscore-related module gene score (cTMGs), based on four identified TME-associated genes (, , , and ) showing a close correlation with the cTICscore, which was generated by weighted gene co-expression network analysis and least absolute shrinkage and selection operator analysis to facilitate clinical application. Patients with low cTMGs had significantly better overall survival (OS, = 0.002,< 0.001, = 0.002, and = 0.03, respectively) in the training and validating CM datasets. In addition, the area under the curve values used to predict the immune response in four CM cohorts were 0.723, 0.723, 0.754, and 0.792, respectively, and that in one gastric cohort was 0.764. Therefore, the four-gene signature, based on cTICscore, might improve prognostic information, serving as a predictive tool for CM patients receiving immunotherapy.cutaneous melanoma, tumor microenvironment, prognosis, immunotherapy, cTICscore.

摘要

王育涛,中国医科大学,中国肿瘤微环境(TME)已被证明会影响包括皮肤黑色素瘤(CM)在内的肿瘤患者的预后;然而,并非 TME 的所有成分都很重要。鉴于上述情况,需要与 CM 患者预后相关的功能性免疫细胞含量来优化现有预测模型并反映 TME 的整体情况。我们开发了一种新的风险评分,称为核心肿瘤浸润免疫细胞评分(cTICscore),与现有生物标志物或 TME 相关特征相比,该评分在预测 CM 患者的预后方面具有一定优势。此外,我们基于与 cTICscore 密切相关的四个鉴定的 TME 相关基因(,,,和),探索了一种新的基因特征,称为 cTILscore 相关模块基因评分(cTMGs),这是通过加权基因共表达网络分析和最小绝对收缩和选择算子分析生成的,以促进临床应用。在训练和验证 CM 数据集的患者中,cTMGs 较低的患者总生存期(OS)明显更好(=0.002,<0.001,=0.002,和=0.03,分别)。此外,在四个 CM 队列中用于预测免疫反应的曲线下面积值分别为 0.723、0.723、0.754 和 0.792,在一个胃队列中为 0.764。因此,基于 cTICscore 的四基因特征可能会改善预后信息,作为接受免疫治疗的 CM 患者的预测工具。皮肤黑色素瘤,肿瘤微环境,预后,免疫治疗,cTICscore。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ff0/9441634/abd1bf8bc8d2/fimmu-13-914612-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ff0/9441634/1520d138cde8/fimmu-13-914612-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ff0/9441634/cad81bcc6c79/fimmu-13-914612-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ff0/9441634/841436cd3457/fimmu-13-914612-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ff0/9441634/a004c43f8f37/fimmu-13-914612-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ff0/9441634/863168631075/fimmu-13-914612-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ff0/9441634/3dd953ac09a3/fimmu-13-914612-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ff0/9441634/abd1bf8bc8d2/fimmu-13-914612-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ff0/9441634/1520d138cde8/fimmu-13-914612-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ff0/9441634/cad81bcc6c79/fimmu-13-914612-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ff0/9441634/841436cd3457/fimmu-13-914612-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ff0/9441634/a004c43f8f37/fimmu-13-914612-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ff0/9441634/863168631075/fimmu-13-914612-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ff0/9441634/3dd953ac09a3/fimmu-13-914612-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ff0/9441634/abd1bf8bc8d2/fimmu-13-914612-g007.jpg

相似文献

[1]
Core immune cell infiltration signatures identify molecular subtypes and promote precise checkpoint immunotherapy in cutaneous melanoma.

Front Immunol. 2022

[2]
Identification of fatty acid metabolism-related molecular subtype biomarkers and their correlation with immune checkpoints in cutaneous melanoma.

Front Immunol. 2022

[3]
Integrative lactylation and tumor microenvironment signature as prognostic and therapeutic biomarkers in skin cutaneous melanoma.

J Cancer Res Clin Oncol. 2023-12

[4]
Construction of Circadian Clock Signature for Tumor Microenvironment in Predicting Survival for Cutaneous Melanoma.

Curr Pharm Des. 2022

[5]
Machine learning-based identification of an immunotherapy-related signature to enhance outcomes and immunotherapy responses in melanoma.

Front Immunol. 2024-9-17

[6]
Genes associated with cellular senescence favor melanoma prognosis by stimulating immune responses in tumor microenvironment.

Comput Biol Med. 2023-5

[7]
Exploring a specialized programmed-cell death patterns to predict the prognosis and sensitivity of immunotherapy in cutaneous melanoma via machine learning.

Apoptosis. 2024-8

[8]
RNA M6A modification shaping cutaneous melanoma tumor microenvironment and predicting immunotherapy response.

Pigment Cell Melanoma Res. 2024-7

[9]
Pyroptosis-related gene mediated modification patterns and immune cell infiltration landscapes in cutaneous melanoma to aid immunotherapy.

Aging (Albany NY). 2021-11-9

[10]
Development and validation of an immune gene set-based prognostic signature in cutaneous melanoma.

Future Oncol. 2021-11

引用本文的文献

[1]
Deep learning based deconvolution methods: A systematic review.

Comput Struct Biotechnol J. 2025-6-11

[2]
Machine learning‑based construction of damage‑associated molecular patterns related score identifies subtypes of pancreatic adenocarcinoma with distinct prognosis.

Oncol Lett. 2025-3-24

[3]
A cancer-associated fibroblasts related risk score (CAFscore) helps to guide prognosis and personal treatment for Glioblastoma.

Discov Oncol. 2024-9-10

[4]
Multi-omics analysis elucidates the relationship between intratumor microbiome and host immune heterogeneity in breast cancer.

Microbiol Spectr. 2024-4-2

[5]
Copper metabolism-related risk score identifies hepatocellular carcinoma subtypes and SLC27A5 as a potential regulator of cuproptosis.

Aging (Albany NY). 2023-12-28

[6]
RPTOR mutation: a novel predictor of efficacious immunotherapy in melanoma.

Invest New Drugs. 2024-2

[7]
Identification and validation of immunogenic cell death-related score in uveal melanoma to improve prediction of prognosis and response to immunotherapy.

Aging (Albany NY). 2023-5-3

[8]
Machine learning-based construction of immunogenic cell death-related score for improving prognosis and response to immunotherapy in melanoma.

Aging (Albany NY). 2023-4-6

[9]
Pyroptosis-based risk score predicts prognosis and drug sensitivity in lung adenocarcinoma.

Open Med (Wars). 2023-3-13

[10]
Construction of an enhanced computed tomography radiomics model for non-invasively predicting granzyme A in head and neck squamous cell carcinoma by machine learning.

Eur Arch Otorhinolaryngol. 2023-7

本文引用的文献

[1]
A single-cell tumor immune atlas for precision oncology.

Genome Res. 2021-10

[2]
Ginseng-derived nanoparticles potentiate immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment.

Mol Ther. 2022-1-5

[3]
Tumor microenvironment evaluation promotes precise checkpoint immunotherapy of advanced gastric cancer.

J Immunother Cancer. 2021-8

[4]
Immune and stromal scoring system associated with tumor microenvironment and prognosis: a gene-based multi-cancer analysis.

J Transl Med. 2021-8-3

[5]
Fibroblast growth factor receptor 3 alterations and response to immune checkpoint inhibition in metastatic urothelial cancer: a real world experience.

Br J Cancer. 2021-10

[6]
Genetic variants of and in myeloid cell-related pathway genes independently predict cutaneous melanoma-specific survival.

Am J Cancer Res. 2021-6-15

[7]
A stromal and immune cell infiltration-based score model predicts prognosis and chemotherapy effect in colorectal cancer.

Int Immunopharmacol. 2021-10

[8]
9-Gene Signature Correlated With CD8 T Cell Infiltration Activated by IFN-γ: A Biomarker of Immune Checkpoint Therapy Response in Melanoma.

Front Immunol. 2021

[9]
CCDC137 Is a Prognostic Biomarker and Correlates With Immunosuppressive Tumor Microenvironment Based on Pan-Cancer Analysis.

Front Mol Biosci. 2021-5-13

[10]
Development and Validation of a CD8+ T Cell Infiltration-Related Signature for Melanoma Patients.

Front Immunol. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索