Lomas Redondo Alba, Sánchez Velázquez Jose M, García Tejedor Álvaro J, Sánchez-Arévalo Lobo Víctor Javier
CEIEC, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Madrid, Spain.
Grupo de Oncología Molecular, Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223, Madrid, Spain.
Comput Struct Biotechnol J. 2025 Jun 11;27:2544-2565. doi: 10.1016/j.csbj.2025.05.038. eCollection 2025.
Within this systematic review we examine the role of Artificial Intelligence (AI) and Deep Learning (DL) in the development of cellular deconvolution tools, with an special focus on their application to the analysis of transcriptomics data from RNA sequencing. We emphasize the critical importance of high-quality reference profiles for enhancing the accuracy of the discussed deconvolution methods, which is essential to determine cellular compositions in complex biological samples. To ensure the robustness of our work, we have applied a rigorous selection process following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Through the review process, we have identified several key research gaps, highlighting the necessity for standardized methodologies and the improvement of the interpretability of the models. Overall, we present a comprehensive, up to date overview of the different methodologies, datasets, and findings associated with DL-driven deconvolution tools, paving the way for future research and emphasizing the value of collaboration between computational and biological sciences.
在本系统评价中,我们研究了人工智能(AI)和深度学习(DL)在细胞反卷积工具开发中的作用,特别关注它们在分析RNA测序转录组学数据中的应用。我们强调高质量参考图谱对于提高所讨论的反卷积方法准确性的至关重要性,这对于确定复杂生物样本中的细胞组成至关重要。为确保我们工作的稳健性,我们遵循系统评价和Meta分析的首选报告项目(PRISMA)指南应用了严格的筛选过程。通过审查过程,我们确定了几个关键研究差距,突出了标准化方法的必要性以及模型可解释性的改进。总体而言,我们全面、最新地概述了与DL驱动的反卷积工具相关的不同方法、数据集和研究结果,为未来研究铺平道路,并强调计算科学与生物科学之间合作的价值。