Suppr超能文献

肾透明细胞癌中ceRNA网络基因与肿瘤浸润免疫细胞的相关性及其生物标志物筛选

Correlation between Genes of the ceRNA Network and Tumor-Infiltrating Immune Cells and Their Biomarker Screening in Kidney Renal Clear Cell Carcinoma.

作者信息

Kong Aoran, Dong Hui, Zhang Guangwen, Qiu Shuang, Shen Mengyuan, Niu Xiaohan, Wang Lixin

机构信息

Center of Laboratory Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, China.

Clinical Laboratory, XiangYang Hospital of Traditional Chinese Medicine, Xiangyang, Hubei 441000, China.

出版信息

J Oncol. 2022 Aug 29;2022:4084461. doi: 10.1155/2022/4084461. eCollection 2022.

Abstract

This study aimed to using bioinformatics tools, qPCR, and the immunohistochemical analysis to find out factors related to the early diagnosis and prognosis of kidney renal clear cell carcinoma (KIRC). The expression profiles of lncRNA, miRNA, and mRNA of KIRC were downloaded from The Cancer Genome Atlas database. A ceRNA regulatory network was constructed based on the interaction between these three differentially expressed genes. The CIBERSORT deconvolution algorithm was used to analyze the differential distribution of 22 types of immune cells. The Kaplan-Meier survival and Cox analyses were used to screen genes of the ceRNA network and also immune cell subtypes related to the clinical and prognostic prediction of KIRC. Co-expression regulatory relationships were found among LINC01426, LINC00894, CCNA2, L1 cell adhesion molecule (L1CAM), and T follicular helper cells, which served as potential biomarkers. The results of quantitative reverse transcriptase-polymerase chain reaction showed that LINC01426 was upregulated while L1CAM was downregulated in KIRC, but no difference was found in the expression levels of LINC00894 and CCNA2 in cancer and adjacent samples. The immunohistochemical analysis showed that T follicular helper cells were more concentrated in core tissues and metastases of KIRC. In a word, co-expression relationships were found among LINC01426, L1CAM, and T follicular helper cells, and they may serve as biomarkers for early diagnosis and prognostic evaluation of KIRC.

摘要

本研究旨在利用生物信息学工具、qPCR和免疫组化分析,找出与肾透明细胞癌(KIRC)早期诊断和预后相关的因素。从癌症基因组图谱数据库下载了KIRC的lncRNA、miRNA和mRNA表达谱。基于这三种差异表达基因之间的相互作用构建了ceRNA调控网络。使用CIBERSORT反卷积算法分析22种免疫细胞的差异分布。采用Kaplan-Meier生存分析和Cox分析筛选ceRNA网络中的基因以及与KIRC临床和预后预测相关的免疫细胞亚型。发现LINC01426、LINC00894、CCNA2、L1细胞粘附分子(L1CAM)和T滤泡辅助细胞之间存在共表达调控关系,它们可作为潜在的生物标志物。定量逆转录-聚合酶链反应结果显示,KIRC中LINC01426上调而L1CAM下调,但癌组织和癌旁组织中LINC00894和CCNA2的表达水平无差异。免疫组化分析显示,T滤泡辅助细胞在KIRC的核心组织和转移灶中更集中。总之,发现LINC01426、L1CAM和T滤泡辅助细胞之间存在共表达关系,它们可能作为KIRC早期诊断和预后评估的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96cd/9444395/8821784f90dc/JO2022-4084461.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验