Department of Pharmacology, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
Purinergic Signal. 2023 Dec;19(4):623-632. doi: 10.1007/s11302-022-09897-9. Epub 2022 Sep 8.
Adenosine A receptors (AR) are widely expressed in hippocampal pyramidal neurons and their presynaptic terminals. It is well known that endogenous adenosine regulates hippocampal function through the activation of AR in hippocampal pyramidal neurons and has been reported that blockade of AR induces stronger potentiation of excitatory synaptic transmission in CA2 pyramidal neurons than in CA1 pyramidal neurons. This strong potentiation of CA2 neurons is thought to be caused by the specific modulation of excitatory synaptic transmission through postsynaptic AR. However, the direct effects of AR on postsynaptic AMPA channels remain unknown because of the technical difficulties of patch-clamp recording from mature hippocampal CA2 neurons. We recorded synaptic currents from pyramidal neurons in CA1 and CA2 and analyzed the effects of an AR antagonist on stimulation-evoked synaptic transmission and local application-induced postsynaptic AMPA currents. The antagonist increased the amplitude of evoked synaptic transmission in neurons in both CA1 and CA2. This facilitation was larger in pyramidal neurons in CA2 than in CA1. The antagonist also increased postsynaptic AMPA currents in neurons in CA2 but not in CA1. This facilitation of CA2 AMPA currents was occluded by the intracellular application of a G-protein blocker. Even with the blockade of postsynaptic G-protein signaling, the AR antagonist increased evoked synaptic transmission in neurons in CA2. These results suggest that synaptic transmission in pyramidal neurons in CA2 is regulated by both presynaptic and postsynaptic AR. Moreover, AR regulate excitatory synaptic transmission in pyramidal neurons in CA2 through the characteristic postsynaptic modulation of AMPA currents.
腺苷 A 受体 (AR) 在海马锥体神经元及其突触前末梢广泛表达。众所周知,内源性腺苷通过海马锥体神经元中 AR 的激活来调节海马功能,并且已经报道 AR 阻断会诱导 CA2 锥体神经元中的兴奋性突触传递增强比 CA1 锥体神经元更强。这种 CA2 神经元的强烈增强被认为是通过突触后 AR 对兴奋性突触传递的特异性调制引起的。然而,由于从成熟海马 CA2 神经元进行膜片钳记录的技术困难,AR 对突触后 AMPA 通道的直接影响仍然未知。我们记录了 CA1 和 CA2 中的锥体神经元的突触电流,并分析了 AR 拮抗剂对刺激诱发的突触传递和局部应用诱导的突触后 AMPA 电流的影响。拮抗剂增加了 CA1 和 CA2 神经元中诱发的突触传递的幅度。这种易化在 CA2 中的锥体神经元中比在 CA1 中更大。拮抗剂还增加了 CA2 神经元中的突触后 AMPA 电流,但在 CA1 中没有。这种 CA2 AMPA 电流的易化被细胞内应用 G 蛋白阻断剂所阻断。即使阻断突触后 G 蛋白信号,AR 拮抗剂也会增加 CA2 神经元中诱发的突触传递。这些结果表明 CA2 锥体神经元中的突触传递受突触前和突触后 AR 的调节。此外,AR 通过 AMPA 电流的特征性突触后调制调节 CA2 锥体神经元中的兴奋性突触传递。