Hennighausen Zachariah, Hudak Bethany M, Phillips Madeleine, Moon Jisoo, McCreary Kathleen M, Chuang Hsun-Jen, Rosenberger Matthew R, Jonker Berend T, Li Connie H, Stroud Rhonda M, van 't Erve Olaf M J
NRC Postdoc Residing at the Materials Science and Technology Division, United States Naval Research Laboratory, Washington, DC 20375, United States.
Materials Science and Technology Division, United States Naval Research Laboratory, Washington, DC 20375, United States.
ACS Nano. 2022 Sep 27;16(9):13969-13981. doi: 10.1021/acsnano.2c03367. Epub 2022 Sep 8.
Oxygen conductors and transporters are important to several consequential renewable energy technologies, including fuel cells and syngas production. Separately, monolayer transition-metal dichalcogenides (TMDs) have demonstrated significant promise for a range of applications, including quantum computing, advanced sensors, valleytronics, and next-generation optoelectronics. Here, we synthesize a few-nanometer-thick BiOSe compound that strongly resembles a rare 3 bismuth oxide (BiO) phase and combine it with monolayer TMDs, which are highly sensitive to their environment. We use the resulting 2D heterostructure to study oxygen transport through BiOSe into the interlayer region, whereby the 2D material properties are modulated, finding extraordinarily fast diffusion near room temperature under laser exposure. The oxygen diffusion enables reversible and precise modification of the 2D material properties by controllably intercalating and deintercalating oxygen. Changes are spatially confined, enabling sub-micrometer features (e.g., pixels), and are long-term stable for more than 221 days. Our work suggests few-nanometer-thick BiOSe is a promising unexplored room-temperature oxygen transporter. Additionally, our findings suggest that the mechanism can be applied to other 2D materials as a generalized method to manipulate their properties with high precision and sub-micrometer spatial resolution.
氧导体和氧传输体对包括燃料电池和合成气生产在内的几种重要可再生能源技术至关重要。另外,单层过渡金属二硫属化物(TMD)在一系列应用中展现出了巨大潜力,包括量子计算、先进传感器、谷电子学和下一代光电子学。在此,我们合成了一种几纳米厚的BiOSe化合物,它与一种罕见的三氧化铋(BiO)相极为相似,并将其与对环境高度敏感的单层TMD相结合。我们利用由此产生的二维异质结构来研究氧通过BiOSe传输到层间区域的过程,在此过程中二维材料的性质会受到调制,发现在激光照射下室温附近存在极快的扩散现象。氧扩散能够通过可控地嵌入和脱嵌氧来对二维材料的性质进行可逆且精确的改性。变化在空间上受到限制,能够实现亚微米级特征(例如像素),并且在超过221天的时间内保持长期稳定。我们的工作表明,几纳米厚的BiOSe是一种有前景的未被探索的室温氧传输体。此外,我们的研究结果表明,该机制可作为一种通用方法应用于其他二维材料,以高精度和亚微米空间分辨率操纵它们的性质。