Suppr超能文献

葵花(Helianthus annuus L.)托盘中精油化合物的聚类分析、结构指纹分析和量子化学计算。

Clustering Analysis, Structure Fingerprint Analysis, and Quantum Chemical Calculations of Compounds from Essential Oils of Sunflower L.) Receptacles.

机构信息

Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

出版信息

Int J Mol Sci. 2022 Sep 5;23(17):10169. doi: 10.3390/ijms231710169.

Abstract

Sunflower ( L.) is an appropriate crop for current new patterns of green agriculture, so it is important to change sunflower receptacles from waste to useful resource. However, there is limited knowledge on the functions of compounds from the essential oils of sunflower receptacles. In this study, a new method was created for chemical space network analysis and classification of small samples, and applied to 104 compounds. Here, t-SNE (t-Distributed Stochastic Neighbor Embedding) dimensions were used to reduce coordinates as node locations and edge connections of chemical space networks, respectively, and molecules were grouped according to whether the edges were connected and the proximity of the node coordinates. Through detailed analysis of the structural characteristics and fingerprints of each classified group, our classification method attained good accuracy. Targets were then identified using reverse docking methods, and the active centers of the same types of compounds were determined by quantum chemical calculation. The results indicated that these compounds can be divided into nine groups, according to their mean within-group similarity (MWGS) values. The three families with the most members, i.e., the d-limonene group (18), α-pinene group (10), and γ-maaliene group (nine members) determined the protein targets, using PharmMapper. Structure fingerprint analysis was employed to predict the binding mode of the ligands of four families of the protein targets. Thence, quantum chemical calculations were applied to the active group of the representative compounds of the four families. This study provides further scientific information to support the use of sunflower receptacles.

摘要

向日葵(L.)是当前绿色农业新模式的适宜作物,因此将向日葵花托从废物转变为有用资源非常重要。然而,人们对向日葵花托精油中化合物的功能知之甚少。在这项研究中,创建了一种新的方法用于化学空间网络分析和小样本分类,并应用于 104 种化合物。在这里,t-SNE(t-Distributed Stochastic Neighbor Embedding)维度分别用于减少坐标作为化学空间网络的节点位置和边缘连接,并且根据边缘是否连接以及节点坐标的接近度对分子进行分组。通过对每个分类组的结构特征和指纹进行详细分析,我们的分类方法达到了良好的准确性。然后使用反向对接方法来识别目标,并通过量子化学计算确定同类型化合物的活性中心。结果表明,这些化合物可以根据其组内平均相似度(MWGS)值分为九组。成员最多的三个家族,即 d-柠檬烯组(18)、α-蒎烯组(10)和γ-千里光烯组(九个成员),使用 PharmMapper 确定了蛋白质靶标。结构指纹分析用于预测四个家族的蛋白质靶标配体的结合模式。然后,对四个家族的代表性化合物的活性基团进行量子化学计算。本研究为支持向日葵花托的利用提供了进一步的科学信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4c3/9456235/6844105bddc4/ijms-23-10169-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验