Suppr超能文献

羰基镍粉烧结大毛细压力芯体的孔隙微观结构演变及多孔性能

The Pore Microstructure Evolution and Porous Properties of Large Capillary Pressure Wicks Sintered with Carbonyl Nickel Powder.

作者信息

Zheng Fengshi, Wang Linshan, Wang Rui, Wang Jianwei, Zhang Shaoming, Hu Qiang, Wang Limin

机构信息

Metal Powder Materials Industrial Technology Research Institute of GRINM, Beijing 101407, China.

GRIPM Advanced Materials Co., Ltd., Beijing 101407, China.

出版信息

Materials (Basel). 2022 Aug 24;15(17):5830. doi: 10.3390/ma15175830.

Abstract

We investigated the effect of different sintering temperatures ranging from 200 °C to 600 °C on the porous properties and pore microstructure of large capillary pressure wicks made of carbonyl nickel powder. The evolution model of hydraulic diameter was established and verified by the maximum pore diameter. Hydraulic diameter changed as the roughness of particle surfaces decreased and sintering necks grew large during sintering. In the contact-formation stage and the initial sintering stage (200−500 °C), the decrease in the roughness of particle surfaces played a decisive role, contributing to an increase in hydraulic diameter. In the intermediate sintering stage (600 °C), the growth of sintering necks dominated the process, however the hydraulic diameter was reduced. These results show that the maximum pore diameter first increased and then decreased in the same way as our evolution model. Permeability and capillary performance of the wicks first increased and then declined with increasing sintering temperature. We found the optimal sintering temperature to be 400 °C, at which point the wicks achieved the maximum pore diameter of 1.21 μm, a permeability of 1.77 × 10−14 m2, and their highest capillary performance of 1.46 × 10−8 m.

摘要

我们研究了200℃至600℃不同烧结温度对由羰基镍粉制成的大毛细管压力灯芯的多孔性能和孔隙微观结构的影响。通过最大孔径建立并验证了水力直径的演变模型。在烧结过程中,随着颗粒表面粗糙度降低和烧结颈长大,水力直径发生变化。在接触形成阶段和初始烧结阶段(200 - 500℃),颗粒表面粗糙度的降低起决定性作用,导致水力直径增大。在中间烧结阶段(600℃),烧结颈的长大主导了该过程,然而水力直径却减小了。这些结果表明,最大孔径与我们的演变模型一样先增大后减小。灯芯的渗透率和毛细性能随烧结温度升高先增大后下降。我们发现最佳烧结温度为400℃,此时灯芯的最大孔径达到1.21μm,渗透率为1.77×10−14 m2,毛细性能最高达到1.46×10−8 m。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/046c/9457314/dd403559fe92/materials-15-05830-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验