Orczykowski Wojciech, Bieliński Dariusz M, Anyszka Rafał, Gozdek Tomasz, Klajn Katarzyna, Celichowski Grzegorz, Pędzich Zbigniew, Wojteczko Agnieszka
BESTGUM POLSKA Ltd., Św. Barbary 3, 97-427 Rogowiec, Poland.
Institute of Polymer & Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland.
Materials (Basel). 2022 Aug 29;15(17):5979. doi: 10.3390/ma15175979.
Fly ash (FA) fractions with a particle size of 63 µm < FA < 250 µm obtained by sieve fractionation were used as a partial carbon black (CB) replacement in a rubber mixture based on styrene-butadiene rubber (SBR). In order to improve the interactions at the interface between rubber and fractionated ash, at the stage of preparing the rubber mixtures, two different vinyl silanes were added to the system: Vinyltrimethoxysilane (U-611) or Vinyl-tris (2-methoxy-ethoxy) silane (LUVOMAXX VTMOEO DL50), silane with epoxy groups: 3-(glycidoxypropyl)trimethoxysilane (U-50) or sulfur functionalized silanes: containing sulfide bridges: Bis(triethoxysilylpropyl)polysulfide silane (Si-266) or mercapto groups: Mercaptopropyltrimethoxysilane (Dynaslan MTMO). The conducted research confirmed the effectiveness of silanization with selected functional silanes, from the point of view of improving the processing and operational properties of vulcanizates, in which CB is partially replaced with the finest fractions of fly ash. The silanization generally increased the interaction at the rubber−ash interface, while improving the degree of filler dispersion in the rubber mixture. The results of TGA and FTIR analyses confirmed the presence of silanes chemically bonded to the surface of fly ash particles. SEM tests and determination of the bound rubber (BdR) content show that the introduction of the silanes to the mixture increases the degree of ash dispersion (DI) and the Payne effect, which is the greatest when mercaptosilane was used for modification. The highest increase in torque, which was recorded in the case of rubber mixtures containing sulfur silanes and silane with epoxy groups, may be due to their participation in the vulcanization process, which is confirmed by the results of vulcametric studies. The lowest values of mechanical strength, elongation at break, and the highest hardness of vulcanizates obtained in this case may be the result of the over-crosslinking of the rubber. The addition of sulfur-containing silanes significantly slowed down the vulcanization process, which is particularly visible (up to three times extension of the t90 parameter, compared to mixtures without silane) in the case of Si-266. The addition of silanes, except for Si-266 (with a polysulfide fragment), generally improved the abrasion resistance of vulcanizates. The Dynaslan MTMO silane (with mercapto groups) performs best in this respect. Proper selection of silane for the finest fraction of fly ash in the rubber mixtures tested allows for an increase in the mechanical strength of their vulcanizates from 9.1 to 17 MPa, elongation at break from 290 to 500%, hardness from 68 to 74 °ShA, and reduction in abrasion from 171 to 147 mm3.
通过筛分法获得的粒径为63 µm < FA < 250 µm的粉煤灰(FA)级分,被用作基于丁苯橡胶(SBR)的橡胶混合物中炭黑(CB)的部分替代品。为了改善橡胶与分级灰之间界面的相互作用,在制备橡胶混合物阶段,向体系中添加了两种不同的乙烯基硅烷:乙烯基三甲氧基硅烷(U - 611)或乙烯基三(2 - 甲氧基 - 乙氧基)硅烷(LUVOMAXX VTMOEO DL50)、含环氧基团的硅烷:3 - (缩水甘油氧基丙基)三甲氧基硅烷(U - 50)或硫官能化硅烷:含硫桥键的双(三乙氧基硅丙基)聚硫化物硅烷(Si - 266)或含巯基的巯基丙基三甲氧基硅烷(Dynaslan MTMO)。进行的研究证实了用选定的官能硅烷进行硅烷化的有效性,从改善硫化胶的加工和使用性能的角度来看,其中CB被粉煤灰的最细级分部分替代。硅烷化通常增加了橡胶 - 灰界面处的相互作用,同时提高了填料在橡胶混合物中的分散程度。热重分析(TGA)和傅里叶变换红外光谱(FTIR)分析结果证实了化学键合在粉煤灰颗粒表面的硅烷的存在。扫描电子显微镜(SEM)测试和结合橡胶(BdR)含量的测定表明,向混合物中引入硅烷会增加灰分散度(DI)和佩恩效应,当使用巯基硅烷进行改性时,这种效应最大。在含硫硅烷和含环氧基团硅烷的橡胶混合物中记录到的扭矩增加最高,这可能是由于它们参与了硫化过程,硫化仪研究结果证实了这一点。在这种情况下获得的硫化胶的最低机械强度、断裂伸长率值以及最高硬度可能是橡胶过度交联的结果。含硫硅烷的添加显著减缓了硫化过程,在Si - 266的情况下尤其明显(与不含硅烷的混合物相比,t90参数延长了三倍)。除了Si - 266(含多硫化物片段)之外,硅烷的添加通常提高了硫化胶的耐磨性。Dynaslan MTMO硅烷(含巯基)在这方面表现最佳。为测试的橡胶混合物中粉煤灰的最细级分正确选择硅烷,可使它们的硫化胶的机械强度从9.1 MPa提高到17 MPa,断裂伸长率从290%提高到500%,硬度从68°ShA提高到74°ShA,磨损从171 mm³降低到147 mm³。