Suppr超能文献

嵌入FeSiAl薄片的硬碳用于改善微波吸收性能。

Hard Carbon Embedded with FeSiAl Flakes for Improved Microwave Absorption Properties.

作者信息

Sun Xiaogang, Liu Yi, Kuang Daitao, Lu Jun, Yang Junyi, Peng Xiaomin, Wu Anru

机构信息

Hunan Institute of Engineering, College of Mechanical Engineering, Xiangtan 411104, China.

Hunan Engineering Research Center of New Energy Vehicle Lightweight, Xiangtan 411104, China.

出版信息

Materials (Basel). 2022 Sep 1;15(17):6068. doi: 10.3390/ma15176068.

Abstract

Carbon-based composites have been proven to be strong candidates for microwave absorbers in recent years. However, as an important member, magnetic hard carbon (HC)-based composites have rarely been studied in the field of microwave absorption. In this study, HC embedded with FeSiAl (FeSiAl@HC) was synthesized by pyrolyzing a mixture of FeSiAl flakes and phenolic resin (PR). The as-synthesized HC-FeSiAl exhibited a layered structure, and the detailed microstructures were modified by changing the mass ratio of FeSiAl flakes and PR. Thus, the as-synthesized HC-FeSiAl exhibited tunable magnetic properties, wealthy functional groups, excellent thermal stability, and enhanced microwave absorption properties. The optimal minimum reflection loss is lower up to -36.1 dB, and the effective absorption bandwidth is wider up to 11.7 GHz. These results indicated that HC-FeSiAl should be a strong candidate for practical applications of microwave absorption, which may provide new insight into the synthesis of magnetic HC-based composites.

摘要

近年来,碳基复合材料已被证明是微波吸收体的有力候选材料。然而,作为重要成员之一,基于硬磁碳(HC)的复合材料在微波吸收领域却鲜有研究。在本研究中,通过热解FeSiAl薄片和酚醛树脂(PR)的混合物合成了嵌入FeSiAl的HC(FeSiAl@HC)。合成的HC-FeSiAl呈现出层状结构,通过改变FeSiAl薄片与PR的质量比来调整其微观结构细节。因此,合成的HC-FeSiAl具有可调的磁性、丰富的官能团、优异的热稳定性以及增强的微波吸收性能。最佳最小反射损耗低至-36.1 dB,有效吸收带宽宽至11.7 GHz。这些结果表明,HC-FeSiAl应是微波吸收实际应用的有力候选材料,这可能为基于磁性HC的复合材料的合成提供新的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e93/9457624/2b369a8dbe34/materials-15-06068-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验