Suppr超能文献

磁电协同作用下微波吸收微球的研究进展

Recent progress of microwave absorption microspheres by magnetic-dielectric synergy.

作者信息

Wang Lei, Li Xiao, Shi Xiaofeng, Huang Mengqiu, Li Xiaohui, Zeng Qingwen, Che Renchao

机构信息

Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, P. R. China.

出版信息

Nanoscale. 2021 Feb 4;13(4):2136-2156. doi: 10.1039/d0nr06267g.

Abstract

Designing and developing high-performance microwave absorption (MA) materials for electromagnetic protection and radar detection have received widespread attention. Recently, magnetic-dielectric MA materials have become a research hotspot due to their unique complementary functions and synergy loss mechanism. Herein, we review important research progress of excellent MA systems combining strong magnetic components and dielectric substrates. The functional materials involve magnetic materials, carbon components, semiconductors, polymer and so on. For a comprehensive analysis, current development and challenges are firstly introduced in the background. Modern requirements for microwave energy conversion are elaborated in the following part. To highlight the key points, more attention has been paid to the magnetic-dielectric synergy microsphere: (i) core/yolk-shell structure, (ii) multi-component assembly and (iii) MOF-derived synergy composites. Meanwhile, classical and typical high-performance MA composites with a multi-loss mechanism are also mentioned in this review paper. Finally, the design principles, electromagnetic synergy, future mechanism exploration and device application are presented, which provides guidance for understanding MA materials.

摘要

设计和开发用于电磁防护和雷达探测的高性能微波吸收(MA)材料已受到广泛关注。近年来,磁电介质MA材料因其独特的互补功能和协同损耗机制而成为研究热点。在此,我们综述了结合强磁性组分和介电基底的优异MA体系的重要研究进展。功能材料包括磁性材料、碳组分、半导体、聚合物等。为了进行全面分析,首先在背景中介绍了当前的发展情况和挑战。接下来阐述了对微波能量转换的现代要求。为突出重点,更关注磁电介质协同微球:(i)核/壳-核壳结构,(ii)多组分组装,以及(iii)金属有机框架衍生的协同复合材料。同时,本文还提及了具有多损耗机制的经典和典型高性能MA复合材料。最后,介绍了设计原理、电磁协同、未来机制探索及器件应用,为理解MA材料提供了指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验