Díaz-Abad Sergio, Rodrigo Manuel A, Sáez Cristina, Lobato Justo
Chemical Engineering Department, Enrique Costa Building, University of Castilla-La Mancha, Av. Camilo Jose Cela n 12, 13071 Ciudad Real, Spain.
Nanomaterials (Basel). 2022 Aug 24;12(17):2920. doi: 10.3390/nano12172920.
This study reports the hydrogen production using TiO based composite polybenzimidazole membranes through the SO depolarized electrolysis that requires lower energy input than the direct water electrolysis. Composite membranes prepared and studied in this work showed very promising results in terms of proton conductivity, chemical stability, and crossover. Thus, a reduction in SO crossover was observed with the increase of the concentration of TiO, obtaining reductions as high as 42% with the 3.0 wt% TiO-PBI membrane at 120 °C. Higher hydrogen production rates and Faradaic efficiencies were achieved by all the composite membranes, with an optimum for the 1.0 wt% TiO-PBI membrane (with this membrane, the production of hydrogen increased a 53% at 110 °C and a 49% at 120 °C as compared with the standard PBI membrane), demonstrated the benefit of the use of composite membranes with respect to the standard one for green hydrogen production.
本研究报告了通过SO去极化电解使用基于TiO的复合聚苯并咪唑膜制氢,该方法比直接水电解所需的能量输入更低。在本工作中制备和研究的复合膜在质子传导率、化学稳定性和气体渗透方面显示出非常有前景的结果。因此,随着TiO浓度的增加,观察到SO渗透的减少,在120°C下,3.0 wt% TiO-PBI膜的SO渗透减少高达42%。所有复合膜都实现了更高的产氢速率和法拉第效率,其中1.0 wt% TiO-PBI膜表现最佳(与标准PBI膜相比,使用该膜在110°C时产氢量增加了53%,在120°C时增加了49%),证明了使用复合膜相对于标准膜在绿色制氢方面的优势。