Suppr超能文献

合成抗氧化剂桑托白和天然聚合物添加剂抗坏血酸的抗氧化潜力

Antioxidant Potential of Santowhite as Synthetic and Ascorbic Acid as Natural Polymer Additives.

作者信息

Thbayh Dalal K, Reizer Edina, Kahaly Mousumi U, Viskolcz Béla, Fiser Béla

机构信息

Institute of Chemistry, University of Miskolc, 3515 Miskolc, Hungary.

Polymer Research Center, University of Basrah, 61004 Basrah, Iraq.

出版信息

Polymers (Basel). 2022 Aug 27;14(17):3518. doi: 10.3390/polym14173518.

Abstract

A wide variety of additives are used to improve specific characteristics of the final polymeric product. Antioxidant additives (AAs) can prevent oxidative stress and thus the damage of polymeric materials. In this work, the antioxidant potential and thus the applicability of Santowhite (SW) as synthetic and ascorbic acid (Asc) as natural AAs were explored by using computational tools. Two density functional theory (DFT) methods, M05-2X and M06-2X, have been applied in combination with the 6-311++G(2d,2p) basis set in gas phase. Three antioxidant mechanisms have been considered: hydrogen atom transfer (HAT), single electron transfer-proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET). Bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA), and electron transfer enthalpy (ETE) have been computed for each potential hydrogen donor site. The results indicate that the antioxidant potential of Asc is higher than SW. Furthermore, some of the C-H bonds, depending on their position in the structures, are potent radical scavengers, but O-H groups are more prone to donate H-atoms to free radicals. Nonetheless, both additives can be potentially applied to safeguard common polymers and prohibit oxidative stress-induced material deterioration.

摘要

各种各样的添加剂被用于改善最终聚合物产品的特定特性。抗氧化添加剂(AAs)可以防止氧化应激,从而防止聚合物材料的损坏。在这项工作中,通过使用计算工具探索了Santowhite(SW)作为合成抗氧化剂和抗坏血酸(Asc)作为天然抗氧化剂的抗氧化潜力及其适用性。两种密度泛函理论(DFT)方法,M05-2X和M06-2X,已与气相中的6-311++G(2d,2p)基组结合应用。考虑了三种抗氧化机制:氢原子转移(HAT)、单电子转移-质子转移(SET-PT)和顺序质子损失电子转移(SPLET)。已针对每个潜在的氢供体位点计算了键解离焓(BDE)、电离势(IP)、质子解离焓(PDE)、质子亲和力(PA)和电子转移焓(ETE)。结果表明,Asc的抗氧化潜力高于SW。此外,一些C-H键,取决于它们在结构中的位置,是有效的自由基清除剂,但O-H基团更容易向自由基提供H原子。尽管如此,这两种添加剂都有可能用于保护常见聚合物并防止氧化应激引起的材料劣化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55f3/9460313/04d4f0f14409/polymers-14-03518-g001.jpg

相似文献

1
Antioxidant Potential of Santowhite as Synthetic and Ascorbic Acid as Natural Polymer Additives.
Polymers (Basel). 2022 Aug 27;14(17):3518. doi: 10.3390/polym14173518.
2
Comparative study of the antioxidant capability of EDTA and Irganox.
Heliyon. 2023 May 13;9(5):e16064. doi: 10.1016/j.heliyon.2023.e16064. eCollection 2023 May.
3
Free radical scavenging mechanism of 1,3,4-oxadiazole derivatives: thermodynamics of O-H and N-H bond cleavage.
Heliyon. 2020 Mar 31;6(3):e03683. doi: 10.1016/j.heliyon.2020.e03683. eCollection 2020 Mar.
6
Theoretical study on the structural and antioxidant properties of some recently synthesised 2,4,5-trimethoxy chalcones.
Food Chem. 2015 Mar 15;171:89-97. doi: 10.1016/j.foodchem.2014.08.106. Epub 2014 Sep 4.
8
Comparative Study of Antioxidant Potential of Selected Dietary Vitamins; Computational Insights.
Molecules. 2019 Apr 26;24(9):1646. doi: 10.3390/molecules24091646.
9
DFT and QTAIM based investigation on the structure and antioxidant behavior of lichen substances Atranorin, Evernic acid and Diffractaic acid.
Comput Biol Chem. 2019 Jun;80:66-78. doi: 10.1016/j.compbiolchem.2019.03.009. Epub 2019 Mar 23.
10
Radical Scavenging Activity of Puerarin: A Theoretical Study.
Antioxidants (Basel). 2019 Nov 26;8(12):590. doi: 10.3390/antiox8120590.

引用本文的文献

2
Development of toxicity tests for Polyurethane foams.
Heliyon. 2024 Sep 25;10(19):e38440. doi: 10.1016/j.heliyon.2024.e38440. eCollection 2024 Oct 15.
3
Study of the Structure and Bioactivity of Polysaccharides from Different Parts of Lour.
Molecules. 2024 Mar 18;29(6):1347. doi: 10.3390/molecules29061347.
4
Comparative study of the antioxidant capability of EDTA and Irganox.
Heliyon. 2023 May 13;9(5):e16064. doi: 10.1016/j.heliyon.2023.e16064. eCollection 2023 May.
5
Possible Side Effects of Polyphenols and Their Interactions with Medicines.
Molecules. 2023 Mar 10;28(6):2536. doi: 10.3390/molecules28062536.
6
Antimicrobial Compounds in Food Packaging.
Int J Mol Sci. 2023 Jan 27;24(3):2457. doi: 10.3390/ijms24032457.

本文引用的文献

1
Assessment of the Ageing and Durability of Polymers.
Polymers (Basel). 2022 May 10;14(10):1934. doi: 10.3390/polym14101934.
3
A critical review of fibrous polyurethane-based vascular tissue engineering scaffolds.
J Biol Eng. 2022 Mar 24;16(1):6. doi: 10.1186/s13036-022-00286-9.
5
Benchmarking Antioxidant-Related Properties for Gallic Acid through the Use of DFT, MP2, CCSD, and CCSD(T) Approaches.
J Phys Chem A. 2021 Jan 14;125(1):198-208. doi: 10.1021/acs.jpca.0c09116. Epub 2021 Jan 5.
6
Antioxidant and antimicrobial preservatives: Properties, mechanism of action and applications in food - a review.
Crit Rev Food Sci Nutr. 2022;62(11):2985-3001. doi: 10.1080/10408398.2020.1862046. Epub 2020 Dec 18.
7
Probing structural properties and antioxidant activity mechanisms for eleocarpanthraquinone.
J Mol Model. 2020 Aug 17;26(9):233. doi: 10.1007/s00894-020-04469-3.
8
Antioxidant Activity of Synthetic Polymers of Phenolic Compounds.
Polymers (Basel). 2020 Jul 24;12(8):1646. doi: 10.3390/polym12081646.
9
A computational exploration into the structure, antioxidant capacity, toxicity and drug-like activity of the anthocyanidin "Petunidin".
Heliyon. 2019 Jul 20;5(7):e02115. doi: 10.1016/j.heliyon.2019.e02115. eCollection 2019 Jul.
10
Natural Compounds as Sustainable Additives for Biopolymers.
Polymers (Basel). 2020 Mar 25;12(4):732. doi: 10.3390/polym12040732.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验