Suppr超能文献

预测纤维增强增韧丙烯酸酯复合材料力学性能的模型比较及断口形貌研究

Comparison of Models to Predict Mechanical Properties of FR-AM Composites and a Fractographical Study.

作者信息

Leon-Becerra Juan, González-Estrada Octavio Andrés, Sánchez-Acevedo Heller

机构信息

Research Group in Energy and Environment GIEMA, School of Mechanical Engineering, Universidad Industrial de Santander, Bucaramanga 680002, Colombia.

出版信息

Polymers (Basel). 2022 Aug 29;14(17):3546. doi: 10.3390/polym14173546.

Abstract

Continuous fiber-reinforced additive manufacturing (cFRAM) composites improve the mechanical properties of polymer components. Given the recent interest in their mechanical performance and failure mechanisms, this work aims to describe the principal failure mechanisms and compare the prediction capabilities for the mechanical properties, stiffness constants, and strength of cFRAM using two distinct predictive models. This work presents experimental tensile tests of continuous carbon fiber AM composites varying their reinforced fraction, printing direction, and fiber angle. In the first predictive model, a micromechanical-based model for stiffness and strength predicts their macroscopic response. In the second part, data-driven models using different machine learning algorithms for regression are trained to predict stiffness and strength based on critical parameters. Both models are assessed regarding their accuracy, ease of implementation, and generalization capabilities. Moreover, microstructural images are used for a qualitative evaluation of the parameters and their influence on the macroscopic response and failure surface topology. Finally, we conclude that although predicting the mechanical properties of cFRAM is a complex task, it can be carried on a Gaussian process regression and a micromechanical model, with good accuracy generalized onto different process parameters specimens.

摘要

连续纤维增强增材制造(cFRAM)复合材料可改善聚合物部件的机械性能。鉴于近期对其机械性能和失效机制的关注,本研究旨在描述主要失效机制,并使用两种不同的预测模型比较cFRAM的机械性能、刚度常数和强度的预测能力。本研究对连续碳纤维增材制造复合材料进行了拉伸试验,改变了其增强分数、打印方向和纤维角度。在第一个预测模型中,基于微观力学的刚度和强度模型预测其宏观响应。在第二部分中,使用不同机器学习算法进行回归的数据驱动模型被训练以基于关键参数预测刚度和强度。对这两种模型的准确性、实现的简易性和泛化能力进行了评估。此外,微观结构图像用于对参数及其对宏观响应和失效表面拓扑结构的影响进行定性评估。最后,我们得出结论,尽管预测cFRAM的机械性能是一项复杂的任务,但可以通过高斯过程回归和微观力学模型来进行,且能以良好的准确性推广到不同工艺参数的试样上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd96/9460192/45ea65df324a/polymers-14-03546-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验