Suppr超能文献

基于分层自组织映射的MASK、MPSK 和 MQAM 信号的自动调制分类。

Automatic Modulation Classification for MASK, MPSK, and MQAM Signals Based on Hierarchical Self-Organizing Map.

机构信息

College of Computer, National University of Defense Technology, Changsha 410073, China.

出版信息

Sensors (Basel). 2022 Aug 26;22(17):6449. doi: 10.3390/s22176449.

Abstract

Automatic modulation classification (AMC) plays a fundamental role in common communication systems. Existing clustering models typically handle fewer modulation types with lower classification accuracies and more computational resources. This paper proposes a hierarchical self-organizing map (SOM) based on a feature space composed of high-order cumulants (HOC) and amplitude moment features. This SOM with two stacked layers can identify intrinsic differences among samples in the feature space without the need to set thresholds. This model can roughly cluster the multiple amplitude-shift keying (MASK), multiple phase-shift keying (MPSK), and multiple quadrature amplitude keying (MQAM) samples in the root layer and then finely distinguish the samples with different orders in the leaf layers. We creatively implement a discrete transformation method based on modified activation functions. This method causes MQAM samples to cluster in the leaf layer with more distinct boundaries between clusters and higher classification accuracies. The simulation results demonstrate the superior performance of the proposed hierarchical SOM on AMC problems when compared with other clustering models. Our proposed method can manage more categories of modulation signals and obtain higher classification accuracies while using fewer computational resources.

摘要

自动调制分类(AMC)在常见的通信系统中起着至关重要的作用。现有的聚类模型通常处理的调制类型较少,分类精度较低,需要更多的计算资源。本文提出了一种基于由高阶累积量(HOC)和幅度矩特征组成的特征空间的分层自组织映射(SOM)。这种具有两个堆叠层的 SOM 可以在无需设置阈值的情况下识别特征空间中样本之间的内在差异。该模型可以在根层大致对多个幅度移位键控(MASK)、多个相移键控(MPSK)和多个正交幅度键控(MQAM)样本进行聚类,然后在叶层精细区分不同阶数的样本。我们创造性地实现了一种基于改进激活函数的离散变换方法。该方法使 MQAM 样本在叶层聚类时具有更明显的聚类边界和更高的分类精度。仿真结果表明,与其他聚类模型相比,所提出的分层 SOM 在 AMC 问题上具有优越的性能。我们的方法可以管理更多类别的调制信号,同时使用更少的计算资源获得更高的分类精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cee9/9459754/363e88c058ff/sensors-22-06449-g001.jpg

相似文献

2
Accuracy Analysis of Feature-Based Automatic Modulation Classification via Deep Neural Network.
Sensors (Basel). 2021 Dec 10;21(24):8252. doi: 10.3390/s21248252.
4
Service integrated access network using highly spectral-efficient MASK-MQAM-OFDM coding.
Opt Express. 2013 Mar 11;21(5):6555-60. doi: 10.1364/OE.21.006555.
5
Algorithm for automatic recognition of PSK and QAM with unique classifier based on features and threshold levels.
ISA Trans. 2020 Jul;102:173-192. doi: 10.1016/j.isatra.2020.03.002. Epub 2020 Mar 5.
6
TreeSOM: Cluster analysis in the self-organizing map.
Neural Netw. 2006 Jul-Aug;19(6-7):935-49. doi: 10.1016/j.neunet.2006.05.003. Epub 2006 Jun 15.
7
Clustering Ensemble Model Based on Self-Organizing Map Network.
Comput Intell Neurosci. 2020 Aug 25;2020:2971565. doi: 10.1155/2020/2971565. eCollection 2020.
8
Multistrategy self-organizing map learning for classification problems.
Comput Intell Neurosci. 2011;2011:121787. doi: 10.1155/2011/121787. Epub 2011 Aug 16.
9
A Joint Automatic Modulation Classification Scheme in Spatial Cognitive Communication.
Sensors (Basel). 2022 Aug 29;22(17):6500. doi: 10.3390/s22176500.
10
Clustering of gene expression data: performance and similarity analysis.
BMC Bioinformatics. 2006 Dec 12;7 Suppl 4(Suppl 4):S19. doi: 10.1186/1471-2105-7-S4-S19.

引用本文的文献

1
Optimized Classification of Intelligent Reflecting Surface (IRS)-Enabled GEO Satellite Signals.
Sensors (Basel). 2023 Apr 21;23(8):4173. doi: 10.3390/s23084173.

本文引用的文献

1
A Survey of Modulation Classification Using Deep Learning: Signal Representation and Data Preprocessing.
IEEE Trans Neural Netw Learn Syst. 2022 Dec;33(12):7020-7038. doi: 10.1109/TNNLS.2021.3085433. Epub 2022 Nov 30.
2
Analysis of Spatial Spread Relationships of Coronavirus (COVID-19) Pandemic in the World using Self Organizing Maps.
Chaos Solitons Fractals. 2020 Sep;138:109917. doi: 10.1016/j.chaos.2020.109917. Epub 2020 May 21.
3
A scalable multi-signal approach for the parallelization of self-organizing neural networks.
Neural Netw. 2020 Mar;123:108-117. doi: 10.1016/j.neunet.2019.11.016. Epub 2019 Nov 23.
4
Essentials of the self-organizing map.
Neural Netw. 2013 Jan;37:52-65. doi: 10.1016/j.neunet.2012.09.018. Epub 2012 Oct 4.
5
Topology-based hierarchical clustering of self-organizing maps.
IEEE Trans Neural Netw. 2011 Mar;22(3):474-85. doi: 10.1109/TNN.2011.2107527.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验