College of Computer, National University of Defense Technology, Changsha 410073, China.
Sensors (Basel). 2022 Aug 26;22(17):6449. doi: 10.3390/s22176449.
Automatic modulation classification (AMC) plays a fundamental role in common communication systems. Existing clustering models typically handle fewer modulation types with lower classification accuracies and more computational resources. This paper proposes a hierarchical self-organizing map (SOM) based on a feature space composed of high-order cumulants (HOC) and amplitude moment features. This SOM with two stacked layers can identify intrinsic differences among samples in the feature space without the need to set thresholds. This model can roughly cluster the multiple amplitude-shift keying (MASK), multiple phase-shift keying (MPSK), and multiple quadrature amplitude keying (MQAM) samples in the root layer and then finely distinguish the samples with different orders in the leaf layers. We creatively implement a discrete transformation method based on modified activation functions. This method causes MQAM samples to cluster in the leaf layer with more distinct boundaries between clusters and higher classification accuracies. The simulation results demonstrate the superior performance of the proposed hierarchical SOM on AMC problems when compared with other clustering models. Our proposed method can manage more categories of modulation signals and obtain higher classification accuracies while using fewer computational resources.
自动调制分类(AMC)在常见的通信系统中起着至关重要的作用。现有的聚类模型通常处理的调制类型较少,分类精度较低,需要更多的计算资源。本文提出了一种基于由高阶累积量(HOC)和幅度矩特征组成的特征空间的分层自组织映射(SOM)。这种具有两个堆叠层的 SOM 可以在无需设置阈值的情况下识别特征空间中样本之间的内在差异。该模型可以在根层大致对多个幅度移位键控(MASK)、多个相移键控(MPSK)和多个正交幅度键控(MQAM)样本进行聚类,然后在叶层精细区分不同阶数的样本。我们创造性地实现了一种基于改进激活函数的离散变换方法。该方法使 MQAM 样本在叶层聚类时具有更明显的聚类边界和更高的分类精度。仿真结果表明,与其他聚类模型相比,所提出的分层 SOM 在 AMC 问题上具有优越的性能。我们的方法可以管理更多类别的调制信号,同时使用更少的计算资源获得更高的分类精度。