Suppr超能文献

从 3D 运动数据合成 2D 视频用于机器学习应用。

Synthesising 2D Video from 3D Motion Data for Machine Learning Applications.

机构信息

UWA Minderoo Tech & Policy Lab, Law School, The University of Western Australia, Crawley, WA 6009, Australia.

Institute of General Mechanics, RWTH Aachen University, 52062 Aachen, Germany.

出版信息

Sensors (Basel). 2022 Aug 29;22(17):6522. doi: 10.3390/s22176522.

Abstract

To increase the utility of legacy, gold-standard, three-dimensional (3D) motion capture datasets for computer vision-based machine learning applications, this study proposed and validated a method to synthesise two-dimensional (2D) video image frames from historic 3D motion data. We applied the video-based human pose estimation model OpenPose to real (in situ) and synthesised 2D videos and compared anatomical landmark keypoint outputs, with trivial observed differences (2.11−3.49 mm). We further demonstrated the utility of the method in a downstream machine learning use-case in which we trained and then tested the validity of an artificial neural network (ANN) to estimate ground reaction forces (GRFs) using synthesised and real 2D videos. Training an ANN to estimate GRFs using eight OpenPose keypoints derived from synthesised 2D videos resulted in accurate waveform GRF estimations (r > 0.9; nRMSE < 14%). When compared with using the smaller number of real videos only, accuracy was improved by adding the synthetic views and enlarging the dataset. The results highlight the utility of the developed approach to enlarge small 2D video datasets, or to create 2D video images to accompany 3D motion capture datasets to make them accessible for machine learning applications.

摘要

为了提高传统的、黄金标准的三维(3D)运动捕捉数据集在基于计算机视觉的机器学习应用中的实用性,本研究提出并验证了一种从历史 3D 运动数据合成二维(2D)视频图像帧的方法。我们应用基于视频的人体姿态估计模型 OpenPose 对真实(原位)和合成的 2D 视频进行了处理,并比较了解剖学标志关键点的输出,观察到微小的差异(2.11-3.49 毫米)。我们进一步在下游机器学习用例中展示了该方法的实用性,我们在其中训练并测试了人工神经网络(ANN)的有效性,该神经网络使用合成和真实的 2D 视频来估计地面反力(GRF)。使用从合成的 2D 视频中得出的八个 OpenPose 关键点训练 ANN 来估计 GRF,结果得到了准确的波形 GRF 估计(r > 0.9;nRMSE < 14%)。与仅使用较少数量的真实视频相比,通过添加合成视图并扩大数据集,准确性得到了提高。结果突出了开发的方法在扩大小型 2D 视频数据集或创建 2D 视频图像以伴随 3D 运动捕捉数据集方面的实用性,以使它们可用于机器学习应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2fe/9459679/166951ff5a2d/sensors-22-06522-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验