Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria.
Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria.
Mol Plant. 2022 Oct 3;15(10):1533-1542. doi: 10.1016/j.molp.2022.09.003. Epub 2022 Sep 7.
Biological systems are the sum of their dynamic three-dimensional (3D) parts. Therefore, it is critical to study biological structures in 3D and at high resolution to gain insights into their physiological functions. Electron microscopy of metal replicas of unroofed cells and isolated organelles has been a key technique to visualize intracellular structures at nanometer resolution. However, many of these methods require specialized equipment and personnel to complete them. Here, we present novel accessible methods to analyze biological structures in unroofed cells and biochemically isolated organelles in 3D and at nanometer resolution, focusing on Arabidopsis clathrin-coated vesicles (CCVs). While CCVs are essential trafficking organelles, their detailed structural information is lacking due to their poor preservation when observed via classical electron microscopy protocols experiments. First, we establish a method to visualize CCVs in unroofed cells using scanning transmission electron microscopy tomography, providing sufficient resolution to define the clathrin coat arrangements. Critically, the samples are prepared directly on electron microscopy grids, removing the requirement to use extremely corrosive acids, thereby enabling the use of this method in any electron microscopy lab. Secondly, we demonstrate that this standardized sample preparation allows the direct comparison of isolated CCV samples with those visualized in cells. Finally, to facilitate the high-throughput and robust screening of metal replicated samples, we provide a deep learning analysis method to screen the "pseudo 3D" morphologies of CCVs imaged with 2D modalities. Collectively, our work establishes accessible ways to examine the 3D structure of biological samples and provide novel insights into the structure of plant CCVs.
生物系统是其动态三维(3D)部分的总和。因此,研究 3D 高分辨率的生物结构对于深入了解其生理功能至关重要。对未加顶的细胞和分离的细胞器的金属复制品进行电子显微镜检查一直是在纳米分辨率下可视化细胞内结构的关键技术。然而,许多这些方法都需要专门的设备和人员来完成。在这里,我们提出了新颖的方法,可以在 3D 纳米分辨率下分析未加顶的细胞和生物化学分离的细胞器中的生物结构,重点是拟南芥网格蛋白包被小泡(CCV)。虽然 CCV 是必不可少的运输细胞器,但由于在通过经典电子显微镜观察时其保存不佳,因此缺乏其详细的结构信息。首先,我们建立了一种使用扫描透射电子显微镜断层扫描来可视化未加顶细胞中的 CCV 的方法,该方法提供了足够的分辨率来定义网格蛋白包被的排列。关键的是,样品直接在电子显微镜网格上制备,从而无需使用腐蚀性极强的酸,从而使任何电子显微镜实验室都可以使用该方法。其次,我们证明了这种标准化的样品制备方法可以直接比较分离的 CCV 样品与在细胞中可视化的样品。最后,为了促进金属复制样品的高通量和稳健筛选,我们提供了一种深度学习分析方法,用于筛选用 2D 模式成像的 CCV 的“伪 3D”形态。总之,我们的工作建立了可用于检查生物样品 3D 结构的方法,并为植物 CCV 的结构提供了新的见解。