Abbasi Mozhgan, Verrelst Jochem, Mirzaei Mohsen, Marofi Safar, Bakhtíari Hamid Reza Riyahi
Faculty of Natural Resource and Earth Science, Shahrekord University, Shahrekord 8815648456, Iran.
Image Processing Laboratory (IPL), Parc Científic, Universitat de València, 46980 Paterna, València, Spain.
Remote Sens (Basel). 2019 Dec 23;12(1):63. doi: 10.3390/rs12010063.
Sustainable management of orchard fields requires detailed information about the tree types, which is a main component of precision agriculture programs. To this end, hyperspectral imagery can play a major role in orchard tree species mapping. Efficient use of hyperspectral data in combination with field measurements requires the development of optimized band selection strategies to separate tree species. In this study, field spectroscopy (350 to 2500 nm) was performed through scanning 165 spectral leaf samples of dominant orchard tree species (almond, walnut, and grape) in Chaharmahal va Bakhtiyari province, Iran. Two multivariable methods were employed to identify the optimum wavelengths: the first includes three-step approach ANOVA, random forest classifier (RFC) and principal component analysis (PCA), and the second employs partial least squares (PLS). For both methods we determined whether tree species can be spectrally separated using discriminant analysis (DA) and then the optimal wavelengths were identified for this purpose. Results indicate that all species express distinct spectral behaviors at the beginning of the visible range (from 350 to 439 nm), the red edge and the near infrared wavelengths (from 701 to 1405 nm). The ANOVA test was able to reduce primary wavelengths (2151) to 792, which had a significant difference (99% confidence level), then the RFC further reduced the wavelengths to 118. By removing the overlapping wavelengths, the PCA represented five components (99.87% of variance) which extracted optimal wavelengths were: 363, 423, 721, 1064, and 1388 nm. The optimal wavelengths for the species discrimination using the best PLS-DA model (100% accuracy) were at 397, 515, 647, 1386, and 1919 nm.
果园田地的可持续管理需要有关树木类型的详细信息,这是精准农业计划的主要组成部分。为此,高光谱图像在果园树种测绘中可发挥重要作用。将高光谱数据与实地测量有效结合使用,需要开发优化的波段选择策略来区分树种。在本研究中,通过扫描伊朗恰哈马哈勒-巴赫蒂亚里省主要果园树种(杏仁、核桃和葡萄)的165个光谱叶片样本,进行了野外光谱分析(350至2500纳米)。采用两种多变量方法来确定最佳波长:第一种包括三步法方差分析、随机森林分类器(RFC)和主成分分析(PCA),第二种采用偏最小二乘法(PLS)。对于这两种方法,我们使用判别分析(DA)确定树种是否能在光谱上区分开来,然后为此确定最佳波长。结果表明,所有树种在可见光范围开始时(350至439纳米)、红边和近红外波长(701至1405纳米)都表现出明显的光谱行为。方差分析测试能够将原始波长(2151个)减少到792个,这些波长具有显著差异(99%置信水平),然后RFC进一步将波长减少到118个。通过去除重叠波长,PCA呈现出五个成分(占方差的99.87%),提取的最佳波长为:363、423、721、1064和1388纳米。使用最佳PLS-DA模型(准确率100%)进行物种区分的最佳波长为397、515、647、1386和1919纳米。