Suppr超能文献

基于临床危险因素的脓毒症新发房颤预测模型的开发与验证

Development and validation of a predictive model for new-onset atrial fibrillation in sepsis based on clinical risk factors.

作者信息

Li Zhuanyun, Pang Ming, Li Yongkai, Yu Yaling, Peng Tianfeng, Hu Zhenghao, Niu Ruijie, Li Jiming, Wang Xiaorong

机构信息

Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Department of Neurophysiology, Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, China.

出版信息

Front Cardiovasc Med. 2022 Aug 23;9:968615. doi: 10.3389/fcvm.2022.968615. eCollection 2022.

Abstract

OBJECTIVE

New-onset atrial fibrillation (NOAF) is a common complication and one of the primary causes of increased mortality in critically ill adults. Since early assessment of the risk of developing NOAF is difficult, it is critical to establish predictive tools to identify the risk of NOAF.

METHODS

We retrospectively enrolled 1,568 septic patients treated at Wuhan Union Hospital (Wuhan, China) as a training cohort. For external validation of the model, 924 patients with sepsis were recruited as a validation cohort at the First Affiliated Hospital of Xinjiang Medical University (Urumqi, China). Least absolute shrinkage and selection operator (LASSO) regression and multivariate logistic regression analyses were used to screen predictors. The area under the ROC curve (AUC), calibration curve, and decision curve were used to assess the value of the predictive model in NOAF.

RESULTS

A total of 2,492 patients with sepsis (1,592 (63.88%) male; mean [SD] age, 59.47 [16.42] years) were enrolled in this study. Age (OR: 1.022, 1.009-1.035), international normalized ratio (OR: 1.837, 1.270-2.656), fibrinogen (OR: 1.535, 1.232-1.914), C-reaction protein (OR: 1.011, 1.008-1.014), sequential organ failure assessment score (OR: 1.306, 1.247-1.368), congestive heart failure (OR: 1.714, 1.126-2.608), and dopamine use (OR: 1.876, 1.227-2.874) were used as risk variables to develop the nomogram model. The AUCs of the nomogram model were 0.861 (95% CI, 0.830-0.892) and 0.845 (95% CI, 0.804-0.886) in the internal and external validation, respectively. The clinical prediction model showed excellent calibration and higher net clinical benefit. Moreover, the predictive performance of the model correlated with the severity of sepsis, with higher predictive performance for patients in septic shock than for other patients.

CONCLUSION

The nomogram model can be used as a reliable and simple predictive tool for the early identification of NOAF in patients with sepsis, which will provide practical information for individualized treatment decisions.

摘要

目的

新发房颤(NOAF)是危重症成人常见的并发症,也是死亡率增加的主要原因之一。由于早期评估发生NOAF的风险困难,建立预测工具以识别NOAF风险至关重要。

方法

我们回顾性纳入了在武汉协和医院(中国武汉)接受治疗的1568例脓毒症患者作为训练队列。为对模型进行外部验证,在新疆医科大学第一附属医院(中国乌鲁木齐)招募了924例脓毒症患者作为验证队列。采用最小绝对收缩和选择算子(LASSO)回归及多因素逻辑回归分析筛选预测因素。采用ROC曲线下面积(AUC)、校准曲线和决策曲线评估预测模型在NOAF中的价值。

结果

本研究共纳入2492例脓毒症患者(1592例(63,88%)为男性;平均[标准差]年龄为59.47[16.42]岁)。年龄(OR:1.022,1.009 - 1.035)、国际标准化比值(OR:1.837,1.270 - 2.656)、纤维蛋白原(OR:1.535,1.232 - 1.914)、C反应蛋白(OR:1.011,1.008 - 1.014)、序贯器官衰竭评估评分(OR:1.306,1.247 - 1.368)、充血性心力衰竭(OR:1.714,1.126 - 2.608)及多巴胺使用情况(OR:1.876,1.227 - 2.874)被用作风险变量来构建列线图模型。列线图模型在内部验证和外部验证中的AUC分别为0.861(95%CI,0.830 - 0.892)和0.845(95%CI,0.804 - 0.886)。该临床预测模型显示出良好的校准度和更高的净临床效益。此外,模型的预测性能与脓毒症严重程度相关,对脓毒症休克患者的预测性能高于其他患者。

结论

列线图模型可作为一种可靠且简单的预测工具,用于早期识别脓毒症患者的NOAF,这将为个体化治疗决策提供实用信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/899f/9447992/997421351889/fcvm-09-968615-g001.jpg

相似文献

1
Development and validation of a predictive model for new-onset atrial fibrillation in sepsis based on clinical risk factors.
Front Cardiovasc Med. 2022 Aug 23;9:968615. doi: 10.3389/fcvm.2022.968615. eCollection 2022.
3
Construction and validation of a risk prediction model for 3- and 5-year new-onset atrial fibrillation in HFpEF patients.
Front Cardiovasc Med. 2024 Aug 16;11:1429431. doi: 10.3389/fcvm.2024.1429431. eCollection 2024.
6
Construction of a predictive model for new-onset atrial fibrillation after acute myocardial infarction based on P-wave amplitude in lead V1.
J Electrocardiol. 2024 Mar-Apr;83:56-63. doi: 10.1016/j.jelectrocard.2024.01.005. Epub 2024 Jan 28.
8
Prediction Model of New Onset Atrial Fibrillation in Patients with Acute Coronary Syndrome.
Int J Clin Pract. 2023 Feb 23;2023:3473603. doi: 10.1155/2023/3473603. eCollection 2023.
9
[Combined prognostic value of serum lactic acid, procalcitonin and severity score for short-term prognosis of septic shock patients].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2021 Mar;33(3):281-285. doi: 10.3760/cma.j.cn121430-20201113-00715.

本文引用的文献

2
Interleukin-6-Mediated-Ca Handling Abnormalities Contributes to Atrial Fibrillation in Sterile Pericarditis Rats.
Front Immunol. 2021 Dec 16;12:758157. doi: 10.3389/fimmu.2021.758157. eCollection 2021.
3
Albumin and fibrinogen kinetics in sepsis: a prospective observational study.
Crit Care. 2021 Dec 17;25(1):436. doi: 10.1186/s13054-021-03860-7.
5
Prognostic value of interleukin-6 in atrial fibrillation: A cohort study and meta-analysis.
Anatol J Cardiol. 2021 Dec;25(12):872-879. doi: 10.5152/AnatolJCardiol.2021.69299.
6
Early Coagulation Disorder Is Associated With an Increased Risk of Atrial Fibrillation in Septic Patients.
Front Cardiovasc Med. 2021 Sep 30;8:724942. doi: 10.3389/fcvm.2021.724942. eCollection 2021.
7
Impact of Atrial Fibrillation on Outcome in Takotsubo Syndrome: Data From the International Takotsubo Registry.
J Am Heart Assoc. 2021 Aug 3;10(15):e014059. doi: 10.1161/JAHA.119.014059. Epub 2021 Jul 28.
8
Managing Atrial Fibrillation in Patients With Heart Failure and Reduced Ejection Fraction: A Scientific Statement From the American Heart Association.
Circ Arrhythm Electrophysiol. 2021 Jun;14(6):HAE0000000000000078. doi: 10.1161/HAE.0000000000000078. Epub 2021 Jun 15.
9
Extracellular Vesicles From Epicardial Fat Facilitate Atrial Fibrillation.
Circulation. 2021 Jun 22;143(25):2475-2493. doi: 10.1161/CIRCULATIONAHA.120.052009. Epub 2021 Apr 1.
10
Role of inflammation in atrial fibrillation: A comprehensive review of current knowledge.
J Arrhythm. 2020 Dec 23;37(1):1-10. doi: 10.1002/joa3.12473. eCollection 2021 Feb.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验