Suppr超能文献

优化具有层间顺应性匹配的血管移植物的多孔超弹性响应以促进内腔自清洁

Optimizing the Porohyperelastic Response of a Layered Compliance Matched Vascular Graft to Promote Luminal Self-Cleaning.

机构信息

Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219.

Aerospace and Mechanical Engineering, Biomedical Engineering Interdisciplinary Program University of Arizona, Tucson, AZ 85721.

出版信息

J Biomech Eng. 2023 Feb 1;145(2). doi: 10.1115/1.4055563.

Abstract

Thrombosis and intimal hyperplasia have remained the major failure mechanisms of small-diameter vascular grafts used in bypass procedures. While most efforts to reduce thrombogenicity have used a biochemical surface modification approach, the use of local mechanical phenomena to aid in this goal has received somewhat less attention. In this work, the mechanical, fluid transport, and geometrical properties of a layered and porous vascular graft are optimized within a porohyperelastic finite element framework to maximize self-cleaning via luminal reversal fluid velocity (into the lumen). This is expected to repel platelets as well as inhibit the formation of and/or destabilize adsorbed protein layers thereby reducing thrombogenic potential. A particle swarm optimization algorithm was utilized to maximize luminal reversal fluid velocity while also compliance matching our graft to a target artery (rat aorta). The maximum achievable luminal reversal fluid velocity was approximately 246 μm/s without simultaneously optimizing for host compliance. Simultaneous optimization of reversal flow and compliance resulted in a luminal reversal fluid velocity of 59 μm/s. Results indicate that a thick highly permeable compressible inner layer and a thin low permeability incompressible outer layer promote intraluminal reversal fluid velocity. Future research is needed to determine the feasibility of fabricating such a layered and optimized graft and verify its ability to improve hemocompatibility.

摘要

血栓形成和内膜增生仍然是旁路手术中小口径血管移植物的主要失效机制。虽然大多数减少血栓形成的努力都采用了生化表面改性方法,但利用局部机械现象来辅助实现这一目标的关注相对较少。在这项工作中,在多孔超弹性有限元框架内优化了分层多孔血管移植物的力学、流体输送和几何特性,以通过管腔反向流体速度(进入管腔)最大化自清洁效果。这有望排斥血小板,并抑制吸附蛋白层的形成和/或失稳,从而降低血栓形成的潜力。利用粒子群优化算法来最大化管腔反向流体速度,同时使移植物与目标动脉(大鼠主动脉)的顺应性相匹配。在不同时优化宿主顺应性的情况下,最大可实现的管腔反向流体速度约为 246μm/s。同时优化反向流动和顺应性会导致管腔反向流体速度为 59μm/s。结果表明,厚的高渗透性可压缩内层和薄的低渗透性不可压缩外层促进管腔内反向流体速度。需要进一步的研究来确定制造这种分层和优化的移植物的可行性,并验证其改善血液相容性的能力。

相似文献

2
Improving the hemocompatibility of a porohyperelastic layered vascular graft using luminal reversal microflows.
J Mech Behav Biomed Mater. 2024 Sep;157:106638. doi: 10.1016/j.jmbbm.2024.106638. Epub 2024 Jun 22.
4
Fluid dynamics, wall mechanics, and oxygen transfer in peripheral bypass anastomoses.
Ann Biomed Eng. 2002 Apr;30(4):447-60. doi: 10.1114/1.1477445.
5
Hybrid electrospun rapamycin-loaded small-diameter decellularized vascular grafts effectively inhibit intimal hyperplasia.
Acta Biomater. 2019 Oct 1;97:321-332. doi: 10.1016/j.actbio.2019.06.037. Epub 2019 Sep 12.
6
Porohyperelastic finite element modeling of abdominal aortic aneurysms.
J Biomech Eng. 2010 Oct;132(10):104502. doi: 10.1115/1.4002370.
8
Coaxially-structured fibres with tailored material properties for vascular graft implant.
Mater Sci Eng C Mater Biol Appl. 2019 Apr;97:1-11. doi: 10.1016/j.msec.2018.11.036. Epub 2018 Nov 30.
9
Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses.
J Biomech. 1998 Mar;31(3):229-37. doi: 10.1016/s0197-3975(97)00111-5.

引用本文的文献

1
Construction of vascular grafts based on tissue-engineered scaffolds.
Mater Today Bio. 2024 Nov 10;29:101336. doi: 10.1016/j.mtbio.2024.101336. eCollection 2024 Dec.
2
Improving the hemocompatibility of a porohyperelastic layered vascular graft using luminal reversal microflows.
J Mech Behav Biomed Mater. 2024 Sep;157:106638. doi: 10.1016/j.jmbbm.2024.106638. Epub 2024 Jun 22.

本文引用的文献

1
Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association.
Circulation. 2021 Feb 23;143(8):e254-e743. doi: 10.1161/CIR.0000000000000950. Epub 2021 Jan 27.
2
In-vivo assessment of a tissue engineered vascular graft computationally optimized for target vessel compliance.
Acta Biomater. 2021 Mar 15;123:298-311. doi: 10.1016/j.actbio.2020.12.058. Epub 2021 Jan 20.
3
Atherosclerosis.
Nat Rev Dis Primers. 2019 Aug 16;5(1):56. doi: 10.1038/s41572-019-0106-z.
4
Active wrinkles to drive self-cleaning: A strategy for anti-thrombotic surfaces for vascular grafts.
Biomaterials. 2019 Feb;192:226-234. doi: 10.1016/j.biomaterials.2018.11.005. Epub 2018 Nov 5.
5
Cold-Stored Venous Allografts In Different Preserving Solutions: A Study On Changes In Vein Wall Morphology.
Scand J Surg. 2019 Mar;108(1):67-75. doi: 10.1177/1457496918783728. Epub 2018 Oct 14.
7
A Method for Preparation of an Internal Layer of Artificial Vascular Graft Co-Modified with Salvianolic Acid B and Heparin.
ACS Appl Mater Interfaces. 2018 Jun 13;10(23):19365-19372. doi: 10.1021/acsami.8b02602. Epub 2018 May 29.
8
In vitro and in vivo evaluation of a small-caliber coaxial electrospun vascular graft loaded with heparin and VEGF.
Int J Surg. 2017 Aug;44:244-249. doi: 10.1016/j.ijsu.2017.06.077. Epub 2017 Jun 22.
9
End-point immobilization of heparin on plasma-treated surface of electrospun polycarbonate-urethane vascular graft.
Acta Biomater. 2017 Mar 15;51:138-147. doi: 10.1016/j.actbio.2017.01.012. Epub 2017 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验