Suppr超能文献

具有均匀表面电荷密度的介电和疏水球形液滴的电泳

Electrophoresis of Dielectric and Hydrophobic Spherical Fluid Droplets Possessing Uniform Surface Charge Density.

作者信息

Mahapatra Paramita, Ohshima H, Gopmandal Partha P

机构信息

Department of Mathematics, National Institute of Technology Durgapur, Durgapur 713209, India.

Faculty of Pharmaceutical Sciences, Tokyo University of Science Noda, Chiba 278-8510, Japan.

出版信息

Langmuir. 2022 Sep 20;38(37):11421-11431. doi: 10.1021/acs.langmuir.2c01702. Epub 2022 Sep 9.

Abstract

The present article deals with the theoretical study on electrophoresis of hydrophobic and dielectric spherical fluid droplets possessing uniform surface charge density. Unlike the ideally polarizable liquid droplet bearing constant surface ζ-potential, the tangential component of the Maxwell stress is nonzero for dielectric fluid droplets with uniform surface charge density. We consider the continuity of the tangential component of total stress (sum of the hydrodynamic and Maxwell stresses) and jump in dielectric displacement along the droplet-to-electrolyte interface. The typical situation is considered here for which the interfacial tension of the fluid droplet is sufficiently high so that the droplet retains its spherical shape during its motion. The present theory can be applied to nanoemulsions, hydrophobic oil droplets, gas bubbles, droplets of immiscible liquid suspended in aqueous medium, etc. Based on weak field and low charge assumptions and neglecting the Marangoni effect, the resultant electrokinetic equations are solved using linear perturbation analysis to derive the closed form expression for electrophoretic mobility applicable for the entire range of Debye-Hückel parameter. We further deduced an alternate approximate expression for electrophoretic mobility without involving exponential integrals. Besides, we have derived analytical results for mobility pertaining to various limiting cases. The results are further illustrated to show the impact of pertinent parameters on the overall electrophoretic mobility.

摘要

本文涉及对具有均匀表面电荷密度的疏水和介电球形流体微滴电泳的理论研究。与具有恒定表面ζ电位的理想可极化液滴不同,对于具有均匀表面电荷密度的介电流体微滴,麦克斯韦应力的切向分量不为零。我们考虑总应力(流体动力应力和麦克斯韦应力之和)切向分量的连续性以及沿微滴 - 电解质界面的电介质位移跃变。这里考虑了典型情况,即流体微滴的界面张力足够高,使得微滴在运动过程中保持其球形。本理论可应用于纳米乳液、疏水油滴、气泡、悬浮在水介质中的不混溶液体微滴等。基于弱场和低电荷假设并忽略马兰戈尼效应,使用线性微扰分析求解所得的电动方程,以推导适用于整个德拜 - 休克尔参数范围的电泳迁移率的封闭形式表达式。我们进一步推导了一个不涉及指数积分的电泳迁移率的替代近似表达式。此外,我们还得出了与各种极限情况相关的迁移率分析结果。结果进一步说明以展示相关参数对整体电泳迁移率的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验