Polovnikov Kirill E, Nechaev Sergei K, Grosberg Alexander Y
Skolkovo Institute of Science and Technology, 121205 Moscow, Russia.
LPTMS, Université Paris Saclay, 91405 Orsay Cedex, France.
Phys Rev Lett. 2022 Aug 26;129(9):097801. doi: 10.1103/PhysRevLett.129.097801.
While stretching of a polymer along a flat surface is hardly different from the classical Pincus problem of pulling chain ends in free space, the role of curved geometry in conformational statistics of the stretched chain is an exciting open question. We use scaling analysis and computer simulations to examine stretching of a fractal polymer chain around a disc in 2D (or a cylinder in 3D) of radius R. We reveal that the typical excursions of the polymer away from the surface and curvature-induced correlation length scale as Δ∼R^{β} and S^{*}∼R^{1/z}, respectively, with the Kardar-Parisi-Zhang (KPZ) growth β=1/3 and dynamic exponents z=3/2. Although probability distribution of excursions does not belong to KPZ universality class, the KPZ scaling is independent of the fractal dimension of the polymer and, thus, is universal across classical polymer models, e.g., SAW, randomly branching polymers, crumpled unknotted rings. Additionally, our Letter establishes a mapping between stretched polymers in curved geometry and the Balagurov-Vaks model of random walks among traps.
虽然聚合物在平面上的拉伸与在自由空间中拉链端的经典平卡斯问题几乎没有区别,但弯曲几何形状在拉伸链的构象统计中的作用是一个令人兴奋的开放性问题。我们使用标度分析和计算机模拟来研究半径为R的二维圆盘(或三维圆柱体)周围的分形聚合物链的拉伸。我们发现,聚合物离开表面的典型偏移和曲率诱导的相关长度分别按Δ∼R^{β}和S^{*}∼R^{1/z}缩放,其中 Kardar-Parisi-Zhang(KPZ)增长指数β = 1/3,动力学指数z = 3/2。尽管偏移的概率分布不属于KPZ普适类,但KPZ标度与聚合物的分形维数无关,因此在经典聚合物模型(如自回避行走、随机分支聚合物、未打结的褶皱环)中是通用的。此外,我们的论文建立了弯曲几何形状中拉伸聚合物与陷阱间随机游走的巴拉古罗夫 - 瓦克斯模型之间的映射关系。