Suppr超能文献

基于 Transformer 的 T1 加权图像到 T2 加权 MRI 合成。

Transformer-Based T2-weighted MRI Synthesis from T1-weighted Images.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:5062-5065. doi: 10.1109/EMBC48229.2022.9871183.

Abstract

Multi-modality magnetic resonance (MR) images provide complementary information for disease diagnoses. However, modality missing is quite usual in real-life clinical practice. Current methods usually employ convolution-based generative adversarial network (GAN) or its variants to synthesize the missing modality. With the development of vision transformer, we explore its application in the MRI modality synthesis task in this work. We propose a novel supervised deep learning method for synthesizing a missing modality, making use of a transformer-based encoder. Specifically, a model is trained for translating 2D MR images from T1-weighted to T2-weighted based on conditional GAN (cGAN). We replace the encoder with transformer and input adjacent slices to enrich spatial prior knowledge. Experimental results on a private dataset and a public dataset demonstrate that our proposed model outperforms state-of-the-art supervised methods for MR image synthesis, both quantitatively and qualitatively. Clinical relevance- This work proposes a method to synthesize T2-weighted images from T1-weighted ones to address the modality missing issue in MRI.

摘要

多模态磁共振(MR)图像为疾病诊断提供了互补信息。然而,在实际临床实践中,模态缺失是很常见的。目前的方法通常采用基于卷积的生成对抗网络(GAN)或其变体来合成缺失的模态。随着视觉转换器的发展,我们在这项工作中探索了它在 MRI 模态合成任务中的应用。我们提出了一种新的基于监督学习的方法,用于合成缺失的模态,利用基于转换器的编码器。具体来说,我们基于条件生成对抗网络(cGAN)训练了一个将 T1 加权图像转换为 T2 加权图像的模型。我们用转换器替换编码器,并输入相邻的切片来丰富空间先验知识。在一个私有数据集和一个公共数据集上的实验结果表明,我们提出的模型在 MRI 图像合成方面优于最先进的监督方法,无论是在定量还是定性方面。临床相关性- 这项工作提出了一种从 T1 加权图像合成 T2 加权图像的方法,以解决 MRI 中的模态缺失问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验