Department of Mathematics and Computer Science, CNRS, Aix Marseilles University, UMR, 7249 Marseille, France.
Molecular Neuroimaging, Marseille Public University Hospital System, 13005 Marseille, France.
Sensors (Basel). 2022 Jun 20;22(12):4640. doi: 10.3390/s22124640.
With the strengths of deep learning, computer-aided diagnosis (CAD) is a hot topic for researchers in medical image analysis. One of the main requirements for training a deep learning model is providing enough data for the network. However, in medical images, due to the difficulties of data collection and data privacy, finding an appropriate dataset (balanced, enough samples, etc.) is quite a challenge. Although image synthesis could be beneficial to overcome this issue, synthesizing 3D images is a hard task. The main objective of this paper is to generate 3D T1 weighted MRI corresponding to FDG-PET. In this study, we propose a separable convolution-based Elicit generative adversarial network (E-GAN). The proposed architecture can reconstruct 3D T1 weighted MRI from 2D high-level features and geometrical information retrieved from a Sobel filter. Experimental results on the ADNI datasets for healthy subjects show that the proposed model improves the quality of images compared with the state of the art. In addition, the evaluation of E-GAN and the state of art methods gives a better result on the structural information (13.73% improvement for PSNR and 22.95% for SSIM compared to Pix2Pix GAN) and textural information (6.9% improvements for homogeneity error in Haralick features compared to Pix2Pix GAN).
利用深度学习的优势,计算机辅助诊断 (CAD) 成为医学图像分析研究人员的热门话题。训练深度学习模型的主要要求之一是为网络提供足够的数据。然而,在医学图像中,由于数据收集和数据隐私的困难,找到一个合适的数据集(平衡、足够的样本等)是一个相当大的挑战。尽管图像合成可能有助于克服这个问题,但合成 3D 图像是一项艰巨的任务。本文的主要目的是生成与 FDG-PET 对应的 3D T1 加权 MRI。在这项研究中,我们提出了一种基于可分离卷积的启发式生成对抗网络 (E-GAN)。所提出的架构可以从 Sobel 滤波器检索到的 2D 高级特征和几何信息重建 3D T1 加权 MRI。在 ADNI 数据集上对健康受试者的实验结果表明,与现有技术相比,所提出的模型提高了图像质量。此外,E-GAN 和现有技术方法的评估在结构信息方面(与 Pix2Pix GAN 相比,PSNR 提高了 13.73%,SSIM 提高了 22.95%)和纹理信息(与 Pix2Pix GAN 相比,Haralick 特征的同质性误差提高了 6.9%)方面给出了更好的结果。