Suppr超能文献

基于上下文感知生成对抗网络的脑肿瘤 MRI 合成的通用特征学习。

Common feature learning for brain tumor MRI synthesis by context-aware generative adversarial network.

机构信息

Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250358, China.

Department of Radiology, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.

出版信息

Med Image Anal. 2022 Jul;79:102472. doi: 10.1016/j.media.2022.102472. Epub 2022 May 4.

Abstract

Multi-modal structural Magnetic Resonance Image (MRI) provides complementary information and has been used widely for diagnosis and treatment planning of gliomas. While machine learning is popularly adopted to process and analyze MRI images, most existing tools are based on complete sets of multi-modality images that are costly and sometimes impossible to acquire in real clinical scenarios. In this work, we address the challenge of multi-modality glioma MRI synthesis often with incomplete MRI modalities. We propose 3D Common-feature learning-based Context-aware Generative Adversarial Network (CoCa-GAN) for this purpose. In particular, our proposed CoCa-GAN method adopts the encoder-decoder architecture to map the input modalities into a common feature space by the encoder, from which (1) the missing target modality(-ies) can be synthesized by the decoder, and also (2) the jointly conducted segmentation of the gliomas can help the synthesis task to better focus on the tumor regions. The synthesis and segmentation tasks share the same common feature space, while multi-task learning boosts both their performances. In particular, for the encoder to derive the common feature space, we propose and validate two different models, i.e., (1) early-fusion CoCa-GAN (eCoCa-GAN) and (2) intermediate-fusion CoCa-GAN (iCoCa-GAN). The experimental results demonstrate that the proposed iCoCa-GAN outperforms other state-of-the-art methods in synthesis of missing image modalities. Moreover, our method is flexible to handle the arbitrary combination of input/output image modalities, which makes it feasible to process brain tumor MRI data in real clinical circumstances.

摘要

多模态结构磁共振成像(MRI)提供了互补信息,已广泛用于脑肿瘤的诊断和治疗计划。虽然机器学习已被广泛用于处理和分析 MRI 图像,但大多数现有的工具都基于完整的多模态图像集,这些图像集成本高昂,有时在实际临床情况下也无法获取。在这项工作中,我们解决了经常存在不完整 MRI 模态的多模态脑肿瘤 MRI 合成的挑战。为此,我们提出了基于 3D 共有特征学习的上下文感知生成对抗网络(CoCa-GAN)。具体来说,我们提出的 CoCa-GAN 方法采用编解码器架构,通过编码器将输入模态映射到共有特征空间,从中解码器可以(1)合成缺失的目标模态(多个),并且(2)对脑肿瘤进行联合分割可以帮助合成任务更好地关注肿瘤区域。合成任务和分割任务共享相同的共有特征空间,而多任务学习可以提高它们的性能。特别是,对于编码器来说,要得到共有特征空间,我们提出并验证了两种不同的模型,即(1)早期融合 CoCa-GAN(eCoCa-GAN)和(2)中间融合 CoCa-GAN(iCoCa-GAN)。实验结果表明,所提出的 iCoCa-GAN 在合成缺失的图像模态方面优于其他最先进的方法。此外,我们的方法灵活地处理任意输入/输出图像模态的组合,这使得在实际临床情况下处理脑肿瘤 MRI 数据成为可能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验