Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3435-3438. doi: 10.1109/EMBC48229.2022.9871173.
Autism spectrum disorder (ASD) is a neurodevelopmental condition that impacts language, communication and social interactions. The current diagnostic process for ASD is based upon a detailed multidisciplinary assessment. Currently no clinical biomarker exists to help in the diagnosis and monitoring of this condition that has a prevalence of approximately 1%. The electroretinogram (ERG), is a clinical test that records the electrical response of the retina to light. The ERG is a promising way to study different neurodevelopmental and neurodegenerative disorders, including ASD. In this study, we have proposed a machine learning based method to detect ASD from control subjects using the ERG waveform. We collected ERG signals from 47 control (CO) and 96 ASD individuals. We analyzed ERG signals both in the time and the spectral domain to gain insight into the statistically significant discriminating features between CO and ASD individuals. We evaluated the machine learning (ML) models using a subject independent cross validation-based approach. Time-domain features were able to detect ASD with a maximum 65% accuracy. The classification accuracy of our best ML model using time-domain and spectral features was 86%, with 98% sensitivity. Our preliminary results indicate that spectral analysis of ERG provides helpful information for the classification of ASD.
自闭症谱系障碍(ASD)是一种神经发育障碍,影响语言、沟通和社交互动。目前 ASD 的诊断过程基于详细的多学科评估。目前,没有临床生物标志物可用于帮助诊断和监测这种患病率约为 1%的疾病。视网膜电图(ERG)是一种记录视网膜对光的电反应的临床测试。ERG 是研究包括 ASD 在内的不同神经发育和神经退行性疾病的有前途的方法。在这项研究中,我们提出了一种基于机器学习的方法,使用 ERG 波形从对照受试者中检测 ASD。我们从 47 名对照(CO)和 96 名 ASD 个体中收集了 ERG 信号。我们在时域和频域分析 ERG 信号,以深入了解 CO 和 ASD 个体之间具有统计学意义的区分特征。我们使用基于受试者独立交叉验证的方法评估机器学习(ML)模型。时域特征能够以最大 65%的准确率检测 ASD。使用时域和频域特征的最佳 ML 模型的分类准确率为 86%,灵敏度为 98%。我们的初步结果表明,ERG 的频域分析为 ASD 的分类提供了有用的信息。