School of Public and International Affairs, Virginia Tech, Blacksburg, Virginia 24061, United States.
Department of Civil & Environmental Engineering, University of Washington, Seattle, Washington 98195, United States.
Environ Sci Technol. 2022 Sep 20;56(18):13499-13509. doi: 10.1021/acs.est.2c03581. Epub 2022 Sep 9.
Land use regression (LUR) models are widely applied to estimate intra-urban air pollution concentrations. National-scale LURs typically employ predictors from multiple curated geodatabases at neighborhood scales. In this study, we instead developed national NO models relying on innovative street-level predictors extracted from Google Street View [GSV] imagery. Using machine learning (random forest), we developed two types of models: (1) GSV-only models, which use only GSV features, and (2) GSV + OMI models, which also include satellite observations of NO. Our results suggest that street view imagery alone may provide sufficient information to explain NO variation. Satellite observations can improve model performance, but the contribution decreases as more images are available. Random 10-fold cross-validation of our best models were 0.88 (GSV-only) and 0.91 (GSV + OMI)─a performance that is comparable to traditional LUR approaches. Importantly, our models show that street-level features might have the potential to better capture intra-urban variation of NO pollution than traditional LUR. Collectively, our findings indicate that street view image-based modeling has great potential for building large-scale air quality models under a unified framework. Toward that goal, we describe a cost-effective image sampling strategy for future studies based on a systematic evaluation of image availability and model performance.
土地利用回归 (LUR) 模型被广泛应用于估算城市内的空气污染浓度。国家尺度的 LUR 模型通常采用来自多个社区尺度的精心制作的地理数据库的预测因子。在这项研究中,我们转而开发了依赖于从 Google 街景 [GSV] 图像中提取的创新街景预测因子的全国性 NO 模型。我们使用机器学习(随机森林)开发了两种类型的模型:(1)仅使用 GSV 特征的 GSV 模型,以及(2)同时包含 NO 卫星观测值的 GSV + OMI 模型。我们的结果表明,街景图像本身可能提供了足够的信息来解释 NO 的变化。卫星观测可以提高模型性能,但随着可用图像的增加,其贡献会减少。我们最佳模型的随机 10 折交叉验证的结果分别为 0.88(仅 GSV)和 0.91(GSV + OMI),这一性能与传统的 LUR 方法相当。重要的是,我们的模型表明,街景特征可能具有比传统 LUR 更好地捕捉城市内 NO 污染变化的潜力。总的来说,我们的研究结果表明,基于街景图像的建模在统一框架下构建大规模空气质量模型具有很大的潜力。为此,我们描述了一种基于图像可用性和模型性能的系统评估的、具有成本效益的未来研究图像采样策略。