Department of Computer Engineering, Istanbul Gelisim University, Istanbul, Turkey.
Comput Biol Chem. 2022 Dec;101:107767. doi: 10.1016/j.compbiolchem.2022.107767. Epub 2022 Sep 5.
Microarray data classification is one of the hottest issues in the field of bioinformatics due to its efficiency in diagnosing patients' ailments. But the difficulty is that microarrays possess a huge number of genes where the majority of which are redundant or irrelevant resulting in the deterioration of classification accuracy. For this issue, mutated binary Aquila Optimizer (MBAO) with a time-varying mirrored S-shaped (TVMS) transfer function is proposed as a new wrapper gene (or feature) selection method to find the optimal subset of informative genes. The suggested hybrid method utilizes Minimum Redundancy Maximum Relevance (mRMR) as a filtering approach to choose top-ranked genes in the first stage and then uses MBAO-TVMS as an efficient wrapper approach to identify the most discriminative genes in the second stage. TVMS is adopted to transform the continuous version of Aquila Optimizer (AO) to binary one and a mutation mechanism is incorporated into binary AO to aid the algorithm to escape local optima and improve its global search capabilities. The suggested method was tested on eleven well-known benchmark microarray datasets and compared to other current state-of-the-art methods. Based on the obtained results, mRMR-MBAO confirms its superiority over the mRMR-BAO algorithm and the other comparative GS approaches on the majority of the medical datasets strategies in terms of classification accuracy and the number of selected genes. R codes of MBAO are available at https://github.com/el-pashaei/MBAO.
微阵列数据分析是生物信息学领域中最热门的问题之一,因为它可以有效地诊断患者的疾病。但困难在于,微阵列拥有大量的基因,其中大多数是冗余或不相关的,导致分类准确性降低。针对这个问题,提出了一种具有时变镜像 S 形(TVMS)传递函数的突变二进制 Aquila 优化器(MBAO)作为一种新的包装基因(或特征)选择方法,以找到最佳的信息基因子集。所提出的混合方法利用最小冗余最大相关性(mRMR)作为过滤方法,在第一阶段选择排名靠前的基因,然后使用 MBAO-TVMS 作为有效的包装方法,在第二阶段识别最具区分性的基因。TVMS 用于将 Aquila 优化器(AO)的连续版本转换为二进制版本,并将突变机制纳入二进制 AO 中,以帮助算法摆脱局部最优并提高其全局搜索能力。该方法在十一个著名的基准微阵列数据集上进行了测试,并与其他当前最先进的方法进行了比较。根据得到的结果,mRMR-MBAO 在大多数医学数据集策略的分类准确性和所选基因数量方面都优于 mRMR-BAO 算法和其他比较的 GS 方法。MBAO 的 R 代码可在 https://github.com/el-pashaei/MBAO 获得。