Suppr超能文献

优化癌症诊断:遗传算子和 Sinh Cosh 优化器的混合方法用于肿瘤识别和特征基因选择。

Optimizing cancer diagnosis: A hybrid approach of genetic operators and Sinh Cosh Optimizer for tumor identification and feature gene selection.

机构信息

Faculty of Computers and Information, Minia University, Minia, Egypt.

Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.

出版信息

Comput Biol Med. 2024 Sep;180:108984. doi: 10.1016/j.compbiomed.2024.108984. Epub 2024 Aug 10.

Abstract

The identification of tumors through gene analysis in microarray data is a pivotal area of research in artificial intelligence and bioinformatics. This task is challenging due to the large number of genes relative to the limited number of observations, making feature selection a critical step. This paper introduces a novel wrapper feature selection method that leverages a hybrid optimization algorithm combining a genetic operator with a Sinh Cosh Optimizer (SCHO), termed SCHO-GO. The SCHO-GO algorithm is designed to avoid local optima, streamline the search process, and select the most relevant features without compromising classifier performance. Traditional methods often falter with extensive search spaces, necessitating hybrid approaches. Our method aims to reduce the dimensionality and improve the classification accuracy, which is essential in pattern recognition and data analysis. The SCHO-GO algorithm, integrated with a support vector machine (SVM) classifier, significantly enhances cancer classification accuracy. We evaluated the performance of SCHO-GO using the CEC'2022 benchmark function and compared it with seven well-known metaheuristic algorithms. Statistical analyses indicate that SCHO-GO consistently outperforms these algorithms. Experimental tests on eight microarray gene expression datasets, particularly the Gene Expression Cancer RNA-Seq dataset, demonstrate an impressive accuracy of 99.01% with the SCHO-GO-SVM model, highlighting its robustness and precision in handling complex datasets. Furthermore, the SCHO-GO algorithm excels in feature selection and solving mathematical benchmark problems, presenting a promising approach for tumor identification and classification in microarray data analysis.

摘要

通过微阵列数据中的基因分析来识别肿瘤是人工智能和生物信息学中一个重要的研究领域。由于基因数量相对于观测数量较大,因此特征选择是一个关键步骤,这使得该任务极具挑战性。本文介绍了一种新颖的包装特征选择方法,该方法利用了一种遗传算子与 Sinh Cosh 优化器(SCHO)相结合的混合优化算法,称为 SCHO-GO。SCHO-GO 算法旨在避免局部最优,简化搜索过程,并选择最相关的特征,而不会影响分类器的性能。传统方法在搜索空间广泛时往往会出现故障,因此需要采用混合方法。我们的方法旨在降低维度并提高分类准确性,这在模式识别和数据分析中至关重要。SCHO-GO 算法与支持向量机(SVM)分类器集成,显著提高了癌症分类的准确性。我们使用 CEC'2022 基准函数评估了 SCHO-GO 的性能,并将其与七种著名的元启发式算法进行了比较。统计分析表明,SCHO-GO 始终优于这些算法。在八个微阵列基因表达数据集上的实验测试,特别是在 Gene Expression Cancer RNA-Seq 数据集上,使用 SCHO-GO-SVM 模型实现了令人印象深刻的 99.01%的准确率,突出了其在处理复杂数据集时的稳健性和精度。此外,SCHO-GO 算法在特征选择和解决数学基准问题方面表现出色,为微阵列数据分析中的肿瘤识别和分类提供了一种很有前途的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验