Suppr超能文献

离散节点中丝状伪足黏附力的整合素分子张力成像显示。

Filopodial adhesive force in discrete nodes revealed by integrin molecular tension imaging.

机构信息

Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA.

Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA; Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.

出版信息

Curr Biol. 2022 Oct 24;32(20):4386-4396.e3. doi: 10.1016/j.cub.2022.08.040. Epub 2022 Sep 8.

Abstract

Filopodia are narrow cell extensions involved in various physiological processes. Integrins mediate filopodia adhesion and likely transmit adhesive force to regulate filopodia formation and functions, but the force is extremely weak to study and remains poorly understood. Using integrative tension sensor (ITS), we imaged filopodia adhesive force at the single molecular tension level and investigated the force dynamics and sources. Results show that filopodia integrin tension (FIT) is generated in discrete foci (force nodes) along single filopodia with a spacing of ∼1 μm. Inhibitions of actin polymerization or myosin II activity markedly reduced FIT signals in force nodes at filopodia tips and at filopodia bases, respectively, suggesting differential force sources of FIT in the distal force nodes and proximal ones in filopodia. Using two ITS constructs with different force thresholds for activation, we showed that the molecular force level of FIT is greater at filopodia bases than that at filopodia tips. We also tested the role of vinculin and myosin X in the FIT transmission. With vinculin knockout in cells, filopodia and associated force nodes were still formed normally, suggesting that vinculin is dispensable for the formation of filopodia and force nodes. However, vinculin is indeed required for the transmission of strong FIT (capable of rupturing DNA in a shear conformation), as the strong FIT vanished in filopodia with vinculin knockout. Co-imaging of FIT and myosin X shows no apparent co-localization, demonstrating that myosin X is not directly responsible for generating FIT, despite its prominent role in filopodium elongation.

摘要

中文译文

指状伪足是一种参与多种生理过程的细胞延伸结构。整合素介导指状伪足的黏附,并可能传递黏附力来调节指状伪足的形成和功能,但由于力非常微弱,因此研究和理解仍然不足。使用整合张力传感器(ITS),我们在单个分子张力水平上成像了指状伪足的黏附力,并研究了力的动力学和来源。结果表明,指状伪足整合素张力(FIT)是在单个指状伪足上沿着离散焦点(力节点)产生的,间距约为 1 μm。肌动蛋白聚合或肌球蛋白 II 活性的抑制显著降低了指状伪足尖端和基部的力节点中的 FIT 信号,这表明 FIT 的力源在指状伪足的远端力节点和近端力节点处是不同的。使用两种具有不同激活力阈值的 ITS 构建体,我们表明 FIT 的分子力水平在指状伪足基部大于在指状伪足尖端。我们还测试了 vinculin 和 myosin X 在 FIT 传递中的作用。在细胞中敲除 vinculin 后,指状伪足和相关的力节点仍然正常形成,这表明 vinculin对于指状伪足和力节点的形成不是必需的。然而,vinculin 确实对于强 FIT 的传递是必需的(能够在剪切构象中破坏 DNA),因为在 vinculin 敲除的指状伪足中强 FIT 消失了。FIT 和 myosin X 的共成像显示没有明显的共定位,这表明尽管 myosin X 在指状伪足伸长中起着重要作用,但它并不是产生 FIT 的直接原因。

相似文献

8
Myo10 tail is crucial for promoting long filopodia.肌球蛋白 10 的尾部对于促进长丝状伪足的形成至关重要。
J Biol Chem. 2024 Jan;300(1):105523. doi: 10.1016/j.jbc.2023.105523. Epub 2023 Dec 2.
10
Fluctuations of intracellular forces during cell protrusion.细胞突出过程中细胞内力的波动。
Nat Cell Biol. 2008 Dec;10(12):1393-400. doi: 10.1038/ncb1797. Epub 2008 Nov 16.

本文引用的文献

5
The Global Phosphorylation Landscape of SARS-CoV-2 Infection.新冠病毒感染的全球磷酸化组景观。
Cell. 2020 Aug 6;182(3):685-712.e19. doi: 10.1016/j.cell.2020.06.034. Epub 2020 Jun 28.
9
Integrin activation by talin, kindlin and mechanical forces.整合素通过 talin、kindlin 和机械力的激活。
Nat Cell Biol. 2019 Jan;21(1):25-31. doi: 10.1038/s41556-018-0234-9. Epub 2019 Jan 2.
10
Cellular Mechanotransduction: From Tension to Function.细胞机械转导:从张力到功能
Front Physiol. 2018 Jul 5;9:824. doi: 10.3389/fphys.2018.00824. eCollection 2018.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验