Bamal Apoorva, Uddin Md Galal, Olbert Agnieszka I
School of Engineering, University of Galway, Galway, Ireland.
Ryan Institute, University of Galway, Galway, Ireland.
Heliyon. 2024 Aug 28;10(17):e37073. doi: 10.1016/j.heliyon.2024.e37073. eCollection 2024 Sep 15.
Climate change is a major concern for a range of environmental issues including water resources especially groundwater. Recent studies have reported significant impact of various climatic factors such as change in temperature, precipitation, evapotranspiration, etc. on different groundwater variables. For this, a range of tools and techniques are widely used in the literature including advanced machine learning (ML) and artificial intelligence (AI) approaches. To the best of the authors' knowledge, this review is one of the novel studies that offers an in-depth exploration of ML/AI models for evaluating climate change impact on groundwater variables. The study primarily focuses on the efficacy of various ML/AI models in forecasting critical groundwater parameters such as levels, discharge, storage, and quality under various climatic pressures like temperature and precipitation that influence these variables. A total of 65 research papers were selected for review from the year 2017-2023, providing an up-to-date exploration of the advancements in ML/AI methods for assessing the impact of climate change on various groundwater variables. It should be noted that the ML/AI model performance depends on the data attributes like data types, geospatial resolution, temporal scale etc. Moreover, depending on the research aim and objectives of the different studies along with the data availability, various sets of historical/observation data have been used in the reviewed studies Therefore, the reviewed studies considered these attributes for evaluating different ML/AI models. The results of the study highlight the exceptional ability of neural networks, random forest (RF), decision tree (DT), support vector machines (SVM) to perform exceptionally accurate in predicting water resource changes and identifying key determinants of groundwater level fluctuations. Additionally, the review emphasizes on the enhanced accuracy achieved through hybrid and ensemble ML approaches. In terms of Irish context, the study reveals significant climate change risks posing threats to groundwater quantity and quality along with limited research conducted in this avenue. Therefore, the findings of this review can be helpful for understanding the interplay between climate change and groundwater variables along with the details of the various tools and techniques including ML/AI approaches for assessing the impacts of climate changes on groundwater.
气候变化是包括水资源尤其是地下水在内的一系列环境问题的主要关注点。最近的研究报告了诸如温度、降水、蒸发散等各种气候因素对不同地下水变量的重大影响。为此,文献中广泛使用了一系列工具和技术,包括先进的机器学习(ML)和人工智能(AI)方法。据作者所知,本综述是对用于评估气候变化对地下水变量影响的ML/AI模型进行深入探索的新颖研究之一。该研究主要关注各种ML/AI模型在预测关键地下水参数(如水位、流量、储量和水质)方面的功效,这些参数受温度和降水等各种气候压力影响,而这些气候压力会影响这些变量。从2017年至2023年共挑选了65篇研究论文进行综述,对ML/AI方法在评估气候变化对各种地下水变量影响方面的进展进行了最新探索。需要注意的是,ML/AI模型的性能取决于数据属性,如数据类型、地理空间分辨率、时间尺度等。此外,根据不同研究的研究目的以及数据可用性,综述研究中使用了各种历史/观测数据集。因此,综述研究在评估不同的ML/AI模型时考虑了这些属性。研究结果突出了神经网络、随机森林(RF)、决策树(DT)、支持向量机(SVM)在预测水资源变化和识别地下水位波动的关键决定因素方面表现出的卓越能力。此外,该综述强调了通过混合和集成ML方法实现的更高准确性。就爱尔兰的情况而言,该研究揭示了重大的气候变化风险对地下水量和水质构成威胁,同时在这一领域开展的研究有限。因此,本综述的结果有助于理解气候变化与地下水变量之间的相互作用,以及包括ML/AI方法在内的各种工具和技术的细节,这些工具和技术用于评估气候变化对地下水的影响。