Suppr超能文献

饮用水供应系统中细菌的谷氨酰-tRNA 生物合成调节的内在氯抗性。

Intrinsic chlorine resistance of bacteria modulated by glutaminyl-tRNA biosynthesis in drinking water supply systems.

机构信息

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.

出版信息

Chemosphere. 2022 Dec;308(Pt 2):136322. doi: 10.1016/j.chemosphere.2022.136322. Epub 2022 Sep 6.

Abstract

The existence of chlorine-resistant bacteria (CRB) in drinking water supply systems (DWSSs) results in significant challenges to the biological security of drinking water. However, little is known about the intrinsic chlorine-resistant molecular metabolic mechanism of bacteria in DWSSs. This research explored the microbial interactions and the key metabolic pathways that modulate the chlorine resistance of bacteria in full-scale chloraminated DWSSs. The dominant CRB, including Bdellovibrio, Bradyrhizobium, Peredibacter, Sphingomonas, and Hydrogenophaga, strongly interacted with each other to maintain basic metabolism. A total of 4.21% of the bacterial metabolic pathways were key and specific to chlorine-resistant bacteria. Glutaminyl-tRNA biosynthesis was the dominant metabolic pathway of CRB in the target DWSSs. After chloramine disinfection, the relative abundance of glutamate-tRNA ligase (GlnRS) and the related orthologous genes increased by 10.11% and 14.58%, respectively. The inactivation rate of the GlnRS overexpression strain (81.40%) was lower than that of the wild-type strain (90.11%) after exposure to chloramine. Meanwhile, the growth rate of the GlnRS overexpression strain was higher than that of the wild-type strain. Glutaminyl-tRNA biosynthesis can enhance chlorine resistance in DWSSs.

摘要

饮用水供应系统(DWSS)中存在耐氯细菌(CRB),这对饮用水的生物安全性造成了重大挑战。然而,对于 DWSS 中细菌内在的耐氯分子代谢机制知之甚少。本研究探讨了微生物相互作用和关键代谢途径,这些途径调节了氯胺消毒 DWSS 中细菌的耐氯性。优势耐氯菌,包括蛭弧菌、慢生根瘤菌、鞘氨醇单胞菌、噬氢菌等,它们之间强烈相互作用,维持着基本的代谢。共有 4.21%的细菌代谢途径是耐氯菌特有的关键代谢途径。谷氨酰-tRNA 合成是目标 DWSS 中耐氯菌的主要代谢途径。经过氯胺消毒后,谷氨酸-tRNA 连接酶(GlnRS)及其相关同源基因的相对丰度分别增加了 10.11%和 14.58%。与野生型菌株(90.11%)相比,GlnRS 过表达菌株(81.40%)在接触氯胺后的失活率较低。同时,GlnRS 过表达菌株的生长速度高于野生型菌株。谷氨酰-tRNA 合成可以增强 DWSS 中的耐氯性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验