Suppr超能文献

图像引导的拉曼光谱导航系统提高经会阴前列腺癌检测。第 2 部分:使用结合光谱和 MRI 放射组学特征的分类模型进行体内肿瘤靶向。

Image-guided Raman spectroscopy navigation system to improve transperineal prostate cancer detection. Part 2: in-vivo tumor-targeting using a classification model combining spectral and MRI-radiomics features.

机构信息

Polytechnique Montréal, Canada.

CRCHUM, Canada.

出版信息

J Biomed Opt. 2022 Sep;27(9). doi: 10.1117/1.JBO.27.9.095004.

Abstract

SIGNIFICANCE

The diagnosis and treatment of prostate cancer (PCa) are limited by a lack of intraoperative information to accurately target tumors with needles for biopsy and brachytherapy. An innovative image-guidance technique using optical devices could improve the diagnostic yield of biopsy and efficacy of radiotherapy.

AIM

To evaluate the performance of multimodal PCa detection using biomolecular features from in-situ Raman spectroscopy (RS) combined with image-based (radiomics) features from multiparametric magnetic resonance images (mpMRI).

APPROACH

In a prospective pilot clinical study, 18 patients were recruited and underwent high-dose-rate brachytherapy. Multimodality image fusion (preoperative mpMRI with intraoperative transrectal ultrasound) combined with electromagnetic tracking was used to navigate an RS needle in the prostate prior to brachytherapy. This resulting dataset consisted of Raman spectra and co-located radiomics features from mpMRI. Feature selection was performed with the constraint that no more than 10 features were retained overall from a combination of inelastic scattering spectra and radiomics. These features were used to train support vector machine classifiers for PCa detection based on leave-one-patient-out cross-validation.

RESULTS

RS along with biopsy samples were acquired from 47 sites along the insertion trajectory of the fiber-optics needle: 26 were confirmed as benign or grade group = 1, and 21 as grade group >1, according to histopathological reports. The combination of the fingerprint region of the RS and radiomics showed an accuracy of 83% (sensitivity = 81 % and a specificity = 85 % ), outperforming by more than 9% models trained with either spectroscopic or mpMRI data alone. An optimal number of features was identified between 6 and 8 features, which have good potential for discriminating grade group ≥1 / grade group <1 (accuracy = 87 % ) or grade group >1 / grade group ≤1 (accuracy = 91 % ).

CONCLUSIONS

In-situ Raman spectroscopy combined with mpMRI radiomics features can lead to highly accurate PCa detection for improved in-vivo targeting of biopsy sample collection and radiotherapy seed placement.

摘要

意义

由于缺乏术中信息,无法准确地用针靶向活检和近距离放射治疗的肿瘤,因此前列腺癌 (PCa) 的诊断和治疗受到限制。一种创新的基于光学设备的图像引导技术可以提高活检的诊断率和放疗的疗效。

目的

评估使用原位拉曼光谱 (RS) 的生物分子特征与多参数磁共振成像 (mpMRI) 的基于图像的 (放射组学) 特征相结合对多模态 PCa 检测的性能。

方法

在一项前瞻性试点临床研究中,招募了 18 名患者并接受了高剂量率近距离放射治疗。多模态图像融合(术前 mpMRI 与术中经直肠超声)结合电磁跟踪,用于在近距离放射治疗前导航 RS 针进入前列腺。由此产生的数据集包括拉曼光谱和来自 mpMRI 的共定位放射组学特征。特征选择是在保留的特征总数不超过从非弹性散射光谱和放射组学相结合的 10 个特征的约束下进行的。这些特征用于基于留一患者交叉验证训练用于 PCa 检测的支持向量机分类器。

结果

沿着光纤针的插入轨迹从 47 个部位获得 RS 以及活检样本:根据组织病理学报告,26 个被确认为良性或分级组=1,21 个被确认为分级组 >1。RS 的指纹区域与放射组学的结合显示出 83%的准确性(敏感性=81%,特异性=85%),优于仅使用光谱或 mpMRI 数据训练的模型超过 9%。在 6 到 8 个特征之间确定了最佳数量的特征,这些特征具有很好的潜力来区分分级组≥1/分级组 <1(准确性=87%)或分级组 >1/分级组≤1(准确性=91%)。

结论

原位拉曼光谱结合 mpMRI 放射组学特征可实现高度准确的 PCa 检测,从而改善活检样本采集和放疗种子放置的体内靶向性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc33/9459023/6b2236a0ab30/JBO-027-095004-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验