Suppr超能文献

影像引导式拉曼光谱导航系统提高经会阴前列腺癌检测率。第一部分:拉曼光谱光纤系统和原位组织特征描述。

Image-guided Raman spectroscopy navigation system to improve transperineal prostate cancer detection. Part 1: Raman spectroscopy fiber-optics system and in situ tissue characterization.

机构信息

Polytechnique Montréal, Department of Engineering Physics, Montreal, Quebec, Canada, Canada.

Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada, Canada.

出版信息

J Biomed Opt. 2022 Sep;27(9). doi: 10.1117/1.JBO.27.9.095003.

Abstract

SIGNIFICANCE

The diagnosis of prostate cancer (PCa) and focal treatment by brachytherapy are limited by the lack of precise intraoperative information to target tumors during biopsy collection and radiation seed placement. Image-guidance techniques could improve the safety and diagnostic yield of biopsy collection as well as increase the efficacy of radiotherapy.

AIM

To estimate the accuracy of PCa detection using in situ Raman spectroscopy (RS) in a pilot in-human clinical study and assess biochemical differences between in vivo and ex vivo measurements.

APPROACH

A new miniature RS fiber-optics system equipped with an electromagnetic (EM) tracker was guided by trans-rectal ultrasound-guided imaging, fused with preoperative magnetic resonance imaging to acquire 49 spectra in situ (in vivo) from 18 PCa patients. In addition, 179 spectra were acquired ex vivo in fresh prostate samples from 14 patients who underwent radical prostatectomy. Two machine-learning models were trained to discriminate cancer from normal prostate tissue from both in situ and ex vivo datasets.

RESULTS

A support vector machine (SVM) model was trained on the in situ dataset and its performance was evaluated using leave-one-patient-out cross validation from 28 normal prostate measurements and 21 in-tumor measurements. The model performed at 86% sensitivity and 72% specificity. Similarly, an SVM model was trained with the ex vivo dataset from 152 normal prostate measurements and 27 tumor measurements showing reduced cancer detection performance mostly attributable to spatial registration inaccuracies between probe measurements and histology assessment. A qualitative comparison between in situ and ex vivo measurements demonstrated a one-to-one correspondence and similar ratios between the main Raman bands (e.g., amide I-II bands, phenylalanine).

CONCLUSIONS

PCa detection can be achieved using RS and machine learning models for image-guidance applications using in situ measurements during prostate biopsy procedures.

摘要

意义

前列腺癌 (PCa) 的诊断和局灶性治疗受到限制,因为在活检采集和放射性种子放置过程中缺乏精确的术中信息来靶向肿瘤。图像引导技术可以提高活检采集的安全性和诊断效果,并提高放疗的疗效。

目的

在一项初步的人体临床研究中,评估使用原位拉曼光谱 (RS) 检测前列腺癌的准确性,并评估体内和体外测量之间的生化差异。

方法

一种新的微型 RS 光纤系统配备了电磁 (EM) 跟踪器,通过经直肠超声引导成像进行引导,与术前磁共振成像融合,从 18 名 PCa 患者体内原位 (体内) 采集 49 个光谱。此外,从 14 名接受根治性前列腺切除术的患者的新鲜前列腺样本中采集了 179 个光谱。使用来自 28 个正常前列腺测量值和 21 个肿瘤内测量值的 2 个机器学习模型,训练来区分癌症和正常前列腺组织。

结果

在体内数据集上训练了一个支持向量机 (SVM) 模型,并使用 28 个正常前列腺测量值和 21 个肿瘤内测量值的留一患者交叉验证来评估其性能。该模型的灵敏度为 86%,特异性为 72%。同样,使用来自 152 个正常前列腺测量值和 27 个肿瘤测量值的外数据集训练了一个 SVM 模型,其癌症检测性能降低,主要归因于探针测量和组织学评估之间的空间配准不准确。体内和体外测量之间的定性比较表明存在一对一的对应关系,并且主要拉曼带(例如酰胺 I-II 带、苯丙氨酸)之间的比值相似。

结论

可以使用 RS 和机器学习模型来实现 PCa 的检测,并在前列腺活检过程中使用体内测量值进行图像引导应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ec6/9433338/4c689d617582/JBO-027-095003-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验