Suppr超能文献

用于医学图像分割中无监督域自适应的边缘保持图像合成。

Edge-preserving Image Synthesis for Unsupervised Domain Adaptation in Medical Image Segmentation.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3753-3757. doi: 10.1109/EMBC48229.2022.9871402.

Abstract

Domain Adaptation is a technique to address the lack of massive amounts of labeled data in different application domains. Unsupervised domain adaptation is the process of adapting a model to an unseen target dataset using solely labeled source data and unlabeled target domain data. Though many image-spaces domain adaptation methods have been proposed to capture pixel-level domain-shift, such techniques may fail to maintain high-level semantic information for the segmentation task. For the case of biomedical images, fine details such as blood vessels can be lost during the image transformation operations between domains. In this work, we propose a model that adapts between domains using cycle-consistent loss while maintaining edge details of the original images by enforcing an edge-based loss during the adaptation process. We demonstrate the effectiveness of our algorithm by comparing it to other approaches on two eye fundus vessels segmentation datasets. We achieve 3.1 % increment in Dice score compared to the SOTA and  ∼  7.02% increment compared to a vanilla CycleGAN implementation. Clinical relevance- The proposed adaptation scheme can provide better performance on unseen data for semantic segmentation, which is widely applied in computer-aided diagnosis. Such robust performance can reduce the reliance of a large amount of labeled data, which is a common problem in the medical domain.

摘要

域自适应是一种解决不同应用领域缺乏大量标记数据的技术。无监督域自适应是使用仅有的标记源数据和未标记的目标域数据来适应模型到未见过的目标数据集的过程。虽然已经提出了许多图像空间域自适应方法来捕获像素级的域转移,但这些技术可能无法为分割任务保持高级语义信息。对于生物医学图像的情况,在域之间的图像转换操作期间,可能会丢失血管等精细细节。在这项工作中,我们提出了一种使用循环一致性损失在域之间进行自适应的模型,同时通过在自适应过程中施加基于边缘的损失来保持原始图像的边缘细节。我们通过将其与两个眼底血管分割数据集上的其他方法进行比较,证明了我们算法的有效性。与 SOTA 相比,我们的算法在骰子分数上提高了 3.1%,与普通的 CycleGAN 实现相比提高了约 7.02%。临床相关性- 所提出的适应方案可以为语义分割提供对未见数据的更好性能,这在计算机辅助诊断中得到了广泛应用。这种稳健的性能可以减少对大量标记数据的依赖,这在医学领域是一个常见的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验