Suppr超能文献

基于对抗学习的 CT 容积中多尺度无监督域自适应自动胰腺分割。

Multiscale unsupervised domain adaptation for automatic pancreas segmentation in CT volumes using adversarial learning.

机构信息

Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.

Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China.

出版信息

Med Phys. 2022 Sep;49(9):5799-5818. doi: 10.1002/mp.15827. Epub 2022 Jul 27.

Abstract

PURPOSE

Computer-aided automatic pancreas segmentation is essential for early diagnosis and treatment of pancreatic diseases. However, the annotation of pancreas images requires professional doctors and considerable expenditure. Due to imaging differences among various institution population, scanning devices, imaging protocols, and so on, significant degradation in the performance of model inference results is prone to occur when models trained with domain-specific (usually institution-specific) datasets are directly applied to new (other centers/institutions) domain data. In this paper, we propose a novel unsupervised domain adaptation method based on adversarial learning to address pancreas segmentation challenges with the lack of annotations and domain shift interference.

METHODS

A 3D semantic segmentation model with attention module and residual module is designed as the backbone pancreas segmentation model. In both segmentation model and domain adaptation discriminator network, a multiscale progressively weighted structure is introduced to acquire different field of views. Features of labeled data and unlabeled data are fed in pairs into the proposed multiscale discriminator to learn domain-specific characteristics. Then the unlabeled data features with pseudodomain label are fed to the discriminator to acquire domain-ambiguous information. With this adversarial learning strategy, the performance of the segmentation network is enhanced to segment unseen unlabeled data.

RESULTS

Experiments were conducted on two public annotated datasets as source datasets, respectively, and one private dataset as target dataset, where annotations were not used for the training process but only for evaluation. The 3D segmentation model achieves comparative performance with state-of-the-art pancreas segmentation methods on source domain. After implementing our domain adaptation architecture, the average dice similarity coefficient (DSC) of the segmentation model trained on the NIH-TCIA source dataset increases from 58.79% to 72.73% on the local hospital dataset, while the performance of the target domain segmentation model transferred from the medical segmentation decathlon (MSD) source dataset rises from 62.34% to 71.17%.

CONCLUSIONS

Correlations of features across data domains are utilized to train the pancreas segmentation model on unlabeled data domain, improving the generalization of the model. Our results demonstrate that the proposed method enables the segmentation model to make meaningful segmentation for unseen data of the training set. In the future, the proposed method has the potential to apply segmentation model trained on public dataset to clinical unannotated CT images from local hospital, effectively assisting radiologists in clinical practice.

摘要

目的

计算机辅助自动胰腺分割对于胰腺疾病的早期诊断和治疗至关重要。然而,胰腺图像的标注需要专业医生,并且需要大量的资金投入。由于不同机构人群、扫描设备、成像协议等的成像差异,当使用特定于领域(通常是特定于机构)的数据集训练的模型直接应用于新的(其他中心/机构)领域数据时,模型推断结果的性能往往会显著下降。在本文中,我们提出了一种基于对抗学习的新的无监督领域自适应方法,以解决缺乏标注和领域迁移干扰的胰腺分割挑战。

方法

设计了一个具有注意力模块和残差模块的 3D 语义分割模型作为胰腺分割模型的骨干。在分割模型和域自适应判别器网络中,引入了多尺度渐进加权结构来获取不同的视场。将标记数据和未标记数据的特征成对地输入到所提出的多尺度判别器中,以学习特定于领域的特征。然后,将具有伪域标签的未标记数据特征输入到判别器中,以获取领域模糊信息。通过这种对抗学习策略,增强分割网络的性能,以分割看不见的未标记数据。

结果

在两个公共标注数据集(分别作为源数据集)和一个私有数据集(作为目标数据集)上进行了实验,在训练过程中未使用目标数据集的标注,仅用于评估。3D 分割模型在源域上与最新的胰腺分割方法具有相当的性能。在实现我们的域自适应架构后,在本地医院数据集上,从 NIH-TCIA 源数据集训练的分割模型的平均骰子相似系数(DSC)从 58.79%增加到 72.73%,而从医学分割十项全能(MSD)源数据集转移的目标域分割模型的性能从 62.34%提高到 71.17%。

结论

利用跨数据域的特征相关性来训练未标记数据域的胰腺分割模型,从而提高模型的泛化能力。我们的结果表明,所提出的方法能够使分割模型对训练集的未见过数据进行有意义的分割。在未来,该方法有可能将公共数据集上训练的分割模型应用于本地医院的临床未标注 CT 图像,有效地辅助放射科医生进行临床实践。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验