Petuum Inc., Pittsburgh, PA, 15222, USA.
Int J Comput Assist Radiol Surg. 2020 Jul;15(7):1205-1213. doi: 10.1007/s11548-020-02144-9. Epub 2020 May 22.
The cup-to-disc ratio (CDR), a clinical metric of the relative size of the optic cup to the optic disc, is a key indicator of glaucoma, a chronic eye disease leading to loss of vision. CDR can be measured from fundus images through the segmentation of optic disc and optic cup . Deep convolutional networks have been proposed to achieve biomedical image segmentation with less time and more accuracy, but requires large amounts of annotated training data on a target domain, which is often unavailable. Unsupervised domain adaptation framework alleviates this problem through leveraging off-the-shelf labeled data from its relevant source domains, which is realized by learning domain invariant features and improving the generalization capabilities of the segmentation model.
In this paper, we propose a WGAN domain adaptation framework for detecting optic disc-and-cup boundary in fundus images. Specifically, we build a novel adversarial domain adaptation framework that is guided by Wasserstein distance, therefore with better stability and convergence than typical adversarial methods. We finally evaluate our approach on publicly available datasets.
Our experiments show that the proposed approach improves Intersection-over-Union score for optic disc-and-cup segmentation, Dice score and reduces the root-mean-square error of cup-to-disc ratio, when we compare it with direct transfer learning and other state-of-the-art adversarial domain adaptation methods.
With this work, we demonstrate that WGAN guided domain adaptation obtains a state-of-the-art performance for the joint optic disc-and-cup segmentation in fundus images.
杯盘比(CDR)是一种衡量视杯相对于视盘相对大小的临床指标,是青光眼的一个关键指标,青光眼是一种导致视力丧失的慢性眼病。CDR 可以通过对视盘和视杯进行分割,从眼底图像中进行测量。深度卷积网络已经被提出用于通过更少的时间和更高的准确性来实现生物医学图像分割,但需要在目标域上有大量的注释训练数据,而这通常是不可用的。无监督的域自适应框架通过利用相关源域的现成标记数据来缓解这个问题,这是通过学习域不变特征和提高分割模型的泛化能力来实现的。
在本文中,我们提出了一种用于眼底图像中检测视盘和视杯边界的 WGAN 域自适应框架。具体来说,我们构建了一个新的对抗性域自适应框架,该框架由 Wasserstein 距离指导,因此比典型的对抗性方法具有更好的稳定性和收敛性。我们最后在公开可用的数据集上评估了我们的方法。
我们的实验表明,与直接迁移学习和其他最先进的对抗性域自适应方法相比,所提出的方法提高了视盘和视杯分割的交并比(IoU)得分、Dice 得分,并降低了杯盘比的均方根误差。
通过这项工作,我们证明了 WGAN 引导的域自适应在眼底图像的联合视盘和视杯分割方面获得了最先进的性能。