Suppr超能文献

一种使用 AlexNet 的新型深度学习方法,用于阿尔茨海默病和轻度认知障碍的脑电图分类。

A novel deep learning approach using AlexNet for the classification of electroencephalograms in Alzheimer's Disease and Mild Cognitive Impairment.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3175-3178. doi: 10.1109/EMBC48229.2022.9871497.

Abstract

Alzheimer's Disease (AD) is the most common form of dementia. Mild Cognitive Impairment (MCI) is the term given to the stage describing prodromal AD and represents a 'risk factor' in early-stage AD diagnosis from normal cognitive decline due to ageing. The electroencephalogram (EEG) has been studied extensively for AD characterization, but reliable early-stage diagnosis continues to present a challenge. The aim of this study was to introduce a novel way of classifying between AD patients, MCI subjects, and age-matched healthy control (HC) subjects using EEG-derived feature images and deep learning techniques. The EEG recordings of 141 age-matched subjects (52 AD, 37 MCI, 52 HC) were converted into 2D greyscale images representing the Pearson correlation coefficients and the distance Lempel-Ziv Complexity (dLZC) between the 21 EEG channels. Each feature type was computed from EEG epochs of 1s, 2s, 5s and 10s segmented from the original recording. The CNN architecture AlexNet was modified and employed for this three-way classification task and a 70/30 split was used for training and validation with each of the different epoch lengths and EEG-derived images. Whilst a maximum classification accuracy of 73.49% was obtained using dLZC-derived images from 10s epochs as input to the model, the classification accuracy reached 98.13% using the images obtained from Pearson correlation coefficients and 5s epochs. Clinical Relevance- The preliminary findings from this study show that deep learning applied to the analysis of the EEG can classify subjects with accuracies close to 100.

摘要

阿尔茨海默病(AD)是最常见的痴呆症形式。轻度认知障碍(MCI)是描述前驱 AD 的阶段的术语,代表了由于衰老导致的正常认知能力下降的早期 AD 诊断的“风险因素”。脑电图(EEG)已广泛用于 AD 特征描述,但可靠的早期诊断仍然是一个挑战。本研究旨在引入一种使用 EEG 衍生特征图像和深度学习技术对 AD 患者、MCI 受试者和年龄匹配的健康对照(HC)受试者进行分类的新方法。对 141 名年龄匹配的受试者(52 名 AD、37 名 MCI、52 名 HC)的 EEG 记录进行了转换,生成了代表 21 个 EEG 通道之间 Pearson 相关系数和距离 Lempel-Ziv 复杂度(dLZC)的 2D 灰度图像。每种特征类型均由从原始记录中分段的 1s、2s、5s 和 10s EEG 时段计算得出。修改了 CNN 架构 AlexNet 并将其用于此三向分类任务,使用不同的时段长度和 EEG 衍生图像对每个模型进行 70/30 的训练和验证分割。虽然使用来自 10s 时段的 dLZC 衍生图像作为模型输入时,分类准确率最高可达 73.49%,但使用 Pearson 相关系数和 5s 时段获得的图像时,分类准确率达到 98.13%。临床意义- 本研究的初步结果表明,深度学习应用于 EEG 分析可以达到接近 100%的准确率对受试者进行分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验