Suppr超能文献

使用随机森林回归预测耳鸣患者的最佳治疗干预措施:UNITI 决策支持系统模型的初步研究。

Predicting the optimal therapeutic intervention for tinnitus patients using random forest regression: A preliminary study of UNITI's decision support system model.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2655-2658. doi: 10.1109/EMBC48229.2022.9871331.

Abstract

Tinnitus is the conscious perception of a phantom sound in absence of an external or internal stimulus. More than 1 in 7 adults in the EU experience tinnitus and for a large proportion of them tinnitus is an intrusive, persistent, and disabling condition, which impairs their life quality. Therefore, tinnitus is posed as a major global burden, which requires a precision-medicine approach in terms of treatments that are tailored to individual patients, due to its high heterogeneity. UNITI is a research and innovation project which aims towards this goal, unifying treatments and interventions for tinnitus. In the context UNITI, a randomized controlled trial (RCT) is being conducted and all the participants' data will be utilized for the development of a clinical decision support system (CDSS). This CDSS will predict the optimal therapeutic intervention for a tinnitus patient based on their profile. In this paper, we present a preliminary study of the CDSS model development process. We describe the available input data, the pre-processing steps conducted, the algorithms tested to model the CDSS' prediction, the models' results, and the future work in the context of this project. The R2 score of the selected model is currently 0.65, indicating that its development process is in the right direction but further tuning and hyperparameter optimization is needed. Clinical Relevance- The proposed model will be integrated in a CDSS aiming at indicating the optimal treatment strategy for a tinnitus patient based their personal profile.

摘要

耳鸣是指在没有外部或内部刺激的情况下,有意识地感知到一种幻听。欧盟超过 1/7 的成年人经历过耳鸣,对于其中很大一部分人来说,耳鸣是一种侵入性的、持续的、使人丧失能力的疾病,会损害他们的生活质量。因此,耳鸣被认为是一个主要的全球负担,需要采用个体化精准医疗的方法来治疗,因为它具有高度的异质性。UNITI 是一个研究和创新项目,旨在实现这一目标,统一耳鸣的治疗和干预措施。在 UNITI 项目中,正在进行一项随机对照试验 (RCT),所有参与者的数据都将用于开发一个临床决策支持系统 (CDSS)。该 CDSS 将根据患者的个人资料预测最佳的治疗干预措施。在本文中,我们介绍了 CDSS 模型开发过程的初步研究。我们描述了可用的输入数据、进行的预处理步骤、用于建模 CDSS 预测的算法、模型的结果,以及在该项目背景下的未来工作。所选模型的 R2 得分目前为 0.65,表明其开发过程方向正确,但需要进一步调整和超参数优化。临床相关性- 所提出的模型将被集成到一个 CDSS 中,旨在根据患者的个人资料为其指示最佳的治疗策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验