Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2993-2996. doi: 10.1109/EMBC48229.2022.9871278.
The choice of appropriate machine learning algorithms is crucial for classification problems. This study compares the performance of state-of-the-art time-series deep learning algorithms for classifying food intake using sensor signals. The sensor signals were collected with the help of a wearable sensor system (the Automatic Ingestion Monitor v2, or AIM-2). AIM-2 used an optical and 3-axis accelerometer sensor to capture temporalis muscle activation. Raw signals from those sensors were used to train five classifiers (multilayer perceptron (MLP), time Convolutional Neural Network (time-CNN), Fully Convolutional Neural Network (FCN), Residual Neural Network (ResNet), and Inception network) to differentiate food intake (eating and drinking) from other activities. Data were collected from 17 pilot subjects over the course of 23 days in free-living conditions. A leave one subject out cross-validation scheme was used for training and testing. Time-CNN, FCN, ResNet, and Inception achieved average balanced classification accuracy of 88.84%, 90.18%, 93.47%, and 92.15%, respectively. The results indicate that ResNet outperforms other state-of-the-art deep learning algorithms for this specific problem.
选择合适的机器学习算法对于分类问题至关重要。本研究比较了最先进的时间序列深度学习算法在使用传感器信号对食物摄入进行分类方面的性能。传感器信号是在可穿戴传感器系统(自动摄取监测器 v2,或 AIM-2)的帮助下收集的。AIM-2 使用光学和三轴加速度计传感器来捕获颞肌激活。从这些传感器采集的原始信号被用于训练五个分类器(多层感知机 (MLP)、时间卷积神经网络 (time-CNN)、全卷积神经网络 (FCN)、残差神经网络 (ResNet) 和 Inception 网络),以区分食物摄入(进食和饮水)与其他活动。数据是从 17 名参与初步研究的志愿者在 23 天的自由生活条件下收集的。使用一个受试者留一交叉验证方案进行训练和测试。time-CNN、FCN、ResNet 和 Inception 的平均平衡分类准确率分别为 88.84%、90.18%、93.47%和 92.15%。结果表明,ResNet 在这个特定问题上优于其他最先进的深度学习算法。
Annu Int Conf IEEE Eng Med Biol Soc. 2022-7
Comput Methods Programs Biomed. 2022-6
BMC Med Inform Decis Mak. 2020-12-30
Sensors (Basel). 2021-8-24
Sensors (Basel). 2019-8-29
Fa Yi Xue Za Zhi. 2022-2-25
J Med Internet Res. 2024-11-28
Sci Rep. 2024-1-18