文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习算法在检测食物摄入方面的比较研究。

A Comparative Study of Deep Learning Algorithms for Detecting Food Intake.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2993-2996. doi: 10.1109/EMBC48229.2022.9871278.


DOI:10.1109/EMBC48229.2022.9871278
PMID:36085821
Abstract

The choice of appropriate machine learning algorithms is crucial for classification problems. This study compares the performance of state-of-the-art time-series deep learning algorithms for classifying food intake using sensor signals. The sensor signals were collected with the help of a wearable sensor system (the Automatic Ingestion Monitor v2, or AIM-2). AIM-2 used an optical and 3-axis accelerometer sensor to capture temporalis muscle activation. Raw signals from those sensors were used to train five classifiers (multilayer perceptron (MLP), time Convolutional Neural Network (time-CNN), Fully Convolutional Neural Network (FCN), Residual Neural Network (ResNet), and Inception network) to differentiate food intake (eating and drinking) from other activities. Data were collected from 17 pilot subjects over the course of 23 days in free-living conditions. A leave one subject out cross-validation scheme was used for training and testing. Time-CNN, FCN, ResNet, and Inception achieved average balanced classification accuracy of 88.84%, 90.18%, 93.47%, and 92.15%, respectively. The results indicate that ResNet outperforms other state-of-the-art deep learning algorithms for this specific problem.

摘要

选择合适的机器学习算法对于分类问题至关重要。本研究比较了最先进的时间序列深度学习算法在使用传感器信号对食物摄入进行分类方面的性能。传感器信号是在可穿戴传感器系统(自动摄取监测器 v2,或 AIM-2)的帮助下收集的。AIM-2 使用光学和三轴加速度计传感器来捕获颞肌激活。从这些传感器采集的原始信号被用于训练五个分类器(多层感知机 (MLP)、时间卷积神经网络 (time-CNN)、全卷积神经网络 (FCN)、残差神经网络 (ResNet) 和 Inception 网络),以区分食物摄入(进食和饮水)与其他活动。数据是从 17 名参与初步研究的志愿者在 23 天的自由生活条件下收集的。使用一个受试者留一交叉验证方案进行训练和测试。time-CNN、FCN、ResNet 和 Inception 的平均平衡分类准确率分别为 88.84%、90.18%、93.47%和 92.15%。结果表明,ResNet 在这个特定问题上优于其他最先进的深度学习算法。

相似文献

[1]
A Comparative Study of Deep Learning Algorithms for Detecting Food Intake.

Annu Int Conf IEEE Eng Med Biol Soc. 2022-7

[2]
Automated classification of hand gestures using a wristband and machine learning for possible application in pill intake monitoring.

Comput Methods Programs Biomed. 2022-6

[3]
Machine learning algorithms can classify outdoor terrain types during running using accelerometry data.

Gait Posture. 2019-9-5

[4]
Application of Deep Learning Architectures for Accurate and Rapid Detection of Internal Mechanical Damage of Blueberry Using Hyperspectral Transmittance Data.

Sensors (Basel). 2018-4-7

[5]
Study of the Application of Deep Convolutional Neural Networks (CNNs) in Processing Sensor Data and Biomedical Images.

Sensors (Basel). 2019-8-17

[6]
Stress detection using deep neural networks.

BMC Med Inform Decis Mak. 2020-12-30

[7]
Improving Animal Monitoring Using Small Unmanned Aircraft Systems (sUAS) and Deep Learning Networks.

Sensors (Basel). 2021-8-24

[8]
A Convolutional Neural Network for Real Time Classification, Identification, and Labelling of Vocal Cord and Tracheal Using Laryngoscopy and Bronchoscopy Video.

J Med Syst. 2020-1-2

[9]
Deep Learning and Machine Vision Approaches for Posture Detection of Individual Pigs.

Sensors (Basel). 2019-8-29

[10]
Comparison among Four Deep Learning Image Classification Algorithms in AI-based Diatom Test.

Fa Yi Xue Za Zhi. 2022-2-25

引用本文的文献

[1]
Artificial Intelligence Applications to Measure Food and Nutrient Intakes: Scoping Review.

J Med Internet Res. 2024-11-28

[2]
Integrated image and sensor-based food intake detection in free-living.

Sci Rep. 2024-1-18

[3]
I2N: image to nutrients, a sensor guided semi-automated tool for annotation of images for nutrition analysis of eating episodes.

Front Nutr. 2023-7-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索