Suppr超能文献

基于 CNN 的人体姿态估计软件在远程步态分析中的数据隐私保护和准确性。

Preserving Data Privacy and Accuracy of Human Pose Estimation Software Based on CNN s for Remote Gait Analysis.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3468-3471. doi: 10.1109/EMBC48229.2022.9871763.

Abstract

In the last years there have been significant improvements in the accuracy of real-time 3D skeletal data estimation software. These applications based on convolutional neural networks (CNNs) can playa key role in a variety of clinical scenarios, from gait analysis to medical diagnosis. One of the main challenges is to apply such intelligent video analytic at a distance, which requires the system to satisfy, beside accuracy, also data privacy. To satisfy privacy by default and by design, the software has to run on "edge" computing devices, by which the sensitive information (i.e., the video stream) is elaborated close to the camera while only the process results can be stored or sent over the communication network. In this paper we address such a challenge by evaluating the accuracy of the state-of-the-art software for human pose estimation when run "at the edge". We show how the most accurate platforms for pose estimation based on complex and deep neural networks can become inaccurate due to subs amp ling of the input video frames when run on the resource constrained edge devices. In contrast, we show that, starting from less accurate and "lighter" CNNs and enhancing the pose estimation software with filters and interpolation primitives, the platform achieves better real-time performance and higher accuracy with a deviation below the error tolerance of a marker-based motion capture system.

摘要

在过去的几年中,实时 3D 骨骼数据估计软件的准确性有了显著提高。这些基于卷积神经网络(CNN)的应用程序可以在各种临床场景中发挥关键作用,从步态分析到医疗诊断。主要挑战之一是在远程应用这种智能视频分析,这要求系统除了准确性之外,还满足数据隐私。为了默认和通过设计满足隐私要求,软件必须在“边缘”计算设备上运行,通过该设备,敏感信息(即视频流)在靠近摄像机的地方进行处理,而只有处理结果可以存储或通过通信网络发送。在本文中,我们通过评估在“边缘”运行时最先进的人体姿态估计软件的准确性来应对这一挑战。我们展示了当在资源受限的边缘设备上运行时,基于复杂和深度神经网络的最准确的姿态估计平台由于输入视频帧的采样而变得不准确。相比之下,我们展示了,从不太准确和“更轻”的 CNN 开始,并使用滤波器和插值原语增强姿态估计软件,该平台可以实现更好的实时性能和更高的准确性,偏差低于基于标记的运动捕捉系统的误差容限。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验