Suppr超能文献

使用卷积神经网络工具进行人类活动识别:最新研究综述、数据集、挑战与未来展望。

Human activity recognition using tools of convolutional neural networks: A state of the art review, data sets, challenges, and future prospects.

机构信息

Centre for Pattern Analysis and Machine Intelligence, Department of Electrical and Computer Engineering, University of Waterloo, ON, N2L 3G1, Canada.

Centre for Pattern Analysis and Machine Intelligence, Department of Electrical and Computer Engineering, University of Waterloo, ON, N2L 3G1, Canada; Mohamed Bin Zayed University of Artificial Intelligence, Abu Dhabi, United Arab Emirates.

出版信息

Comput Biol Med. 2022 Oct;149:106060. doi: 10.1016/j.compbiomed.2022.106060. Epub 2022 Sep 1.

Abstract

Human Activity Recognition (HAR) plays a significant role in the everyday life of people because of its ability to learn extensive high-level information about human activity from wearable or stationary devices. A substantial amount of research has been conducted on HAR and numerous approaches based on deep learning have been exploited by the research community to classify human activities. The main goal of this review is to summarize recent works based on a wide range of deep neural networks architecture, namely convolutional neural networks (CNNs) for human activity recognition. The reviewed systems are clustered into four categories depending on the use of input devices like multimodal sensing devices, smartphones, radar, and vision devices. This review describes the performances, strengths, weaknesses, and the used hyperparameters of CNN architectures for each reviewed system with an overview of available public data sources. In addition, a discussion of the current challenges to CNN-based HAR systems is presented. Finally, this review is concluded with some potential future directions that would be of great assistance for the researchers who would like to contribute to this field. We conclude that CNN-based approaches are suitable for effective and accurate human activity recognition system applications despite challenges including availability of data regarding composite or group activities, high computational resource requirements, data privacy concerns, and edge computing limitations. For widespread adaptation, future research should be focused on more efficient edge computing techniques, datasets incorporating contextual information with activities, more explainable methodologies, and more robust systems.

摘要

人体活动识别 (HAR) 因其能够从可穿戴或固定设备中学习关于人体活动的广泛高级信息,因此在人们的日常生活中发挥着重要作用。研究人员已经对 HAR 进行了大量研究,并利用深度学习的众多方法来对人体活动进行分类。本次综述的主要目的是总结基于广泛的深度神经网络架构(即卷积神经网络 (CNN))的最新工作,用于人体活动识别。所回顾的系统根据输入设备的使用情况分为四类,例如多模态感测设备、智能手机、雷达和视觉设备。本综述描述了每个所回顾系统的 CNN 架构的性能、优势、劣势和所使用的超参数,并概述了可用的公共数据源。此外,还讨论了基于 CNN 的 HAR 系统目前面临的挑战。最后,本综述以一些潜在的未来方向结束,这些方向将为希望为该领域做出贡献的研究人员提供很大帮助。我们的结论是,尽管存在一些挑战,包括关于复合或群组活动的数据可用性、高计算资源需求、数据隐私问题和边缘计算限制,基于 CNN 的方法仍然适用于有效和准确的人体活动识别系统应用。为了更广泛地应用,未来的研究应该集中在更有效的边缘计算技术、包含活动上下文信息的数据集、更具解释性的方法和更稳健的系统上。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验