Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:4599-4603. doi: 10.1109/EMBC48229.2022.9871897.
The COVID-19 pandemic has fueled exponential growth in the adoption of remote delivery of primary, specialty, and urgent health care services. One major challenge is the lack of access to physical exam including accurate and inexpensive measurement of remote vital signs. Here we present a novel method for machine learning-based estimation of patient respiratory rate from audio. There exist non-learning methods but their accuracy is limited and work using machine learning known to us is either not directly useful or uses non-public datasets. We are aware of only one publicly available dataset which is small and which we use to evaluate our algorithm. However, to avoid the overfitting problem, we expand its effective size by proposing a new data augmentation method. Our algorithm uses the spectrogram representation and requires labels for breathing cycles, which are used to train a recurrent neural network for recognizing the cycles. Our augmentation method exploits the independence property of the most periodic frequency components of the spectrogram and permutes their order to create multiple signal representations. Our experiments show that our method almost halves the errors obtained by the existing (non-learning) methods. Clinical Relevance- We achieve a Mean Absolute Error (MAE) of 1.0 for the respiratory rate while relying only on an audio signal of a patient breathing. This signal can be collected from a smartphone such that physicians can automatically and reliably determine respiratory rate in a remote setting.
新冠疫情推动了初级医疗、专科医疗和紧急医疗保健服务远程提供的采用呈指数式增长。其中一个主要挑战是无法进行体格检查,包括远程生命体征的准确和廉价测量。在这里,我们提出了一种从音频中基于机器学习估算患者呼吸频率的新方法。虽然存在非学习方法,但它们的准确性有限,而我们所知道的使用机器学习的方法要么不是直接有用的,要么使用非公开数据集。我们只知道一个公开可用的小型数据集,我们使用该数据集来评估我们的算法。然而,为了避免过拟合问题,我们通过提出一种新的数据增强方法来扩展其有效大小。我们的算法使用声谱图表示,需要呼吸周期的标签,这些标签用于训练识别呼吸周期的循环神经网络。我们的增强方法利用了声谱图中最周期性频率分量的独立性属性,并对它们的顺序进行了置换,从而创建了多个信号表示。我们的实验表明,我们的方法几乎将现有(非学习)方法获得的错误减少了一半。临床相关性 - 我们仅依靠患者呼吸的音频信号,就能实现呼吸频率的平均绝对误差(MAE)为 1.0。该信号可以从智能手机中收集,以便医生可以在远程环境中自动且可靠地确定呼吸频率。