使用呼吸似然指数从热成像估计呼吸频率。

Estimation of Respiratory Rate from Thermography Using Respiratory Likelihood Index.

作者信息

Takahashi Yudai, Gu Yi, Nakada Takaaki, Abe Ryuzo, Nakaguchi Toshiya

机构信息

Department of Medical Engineering, Faculty of Engineering, Chiba University, Chiba 263-8522, Japan.

Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan.

出版信息

Sensors (Basel). 2021 Jun 27;21(13):4406. doi: 10.3390/s21134406.

Abstract

Respiration is a key vital sign used to monitor human health status. Monitoring respiratory rate (RR) under non-contact is particularly important for providing appropriate pre-hospital care in emergencies. We propose an RR estimation system using thermal imaging cameras, which are increasingly being used in the medical field, such as recently during the COVID-19 pandemic. By measuring temperature changes during exhalation and inhalation, we aim to track the respiration of the subject in a supine or seated position in real-time without any physical contact. The proposed method automatically selects the respiration-related regions from the detected facial regions and estimates the respiration rate. Most existing methods rely on signals from nostrils and require close-up or high-resolution images, while our method only requires the facial region to be captured. Facial region is detected using YOLO v3, an object detection model based on deep learning. The detected facial region is divided into subregions. By calculating the respiratory likelihood of each segmented region using the newly proposed index, called the Respiratory Quality Index, the respiratory region is automatically selected and the RR is estimated. An evaluation of the proposed RR estimation method was conducted on seven subjects in their early twenties, with four 15 s measurements being taken. The results showed a mean absolute error of 0.66 bpm. The proposed method can be useful as an RR estimation method.

摘要

呼吸是用于监测人体健康状况的关键生命体征。在非接触状态下监测呼吸频率(RR)对于在紧急情况下提供适当的院前护理尤为重要。我们提出了一种使用热成像相机的RR估计系统,热成像相机在医学领域的应用越来越广泛,比如在最近的新冠疫情期间。通过测量呼气和吸气过程中的温度变化,我们旨在实时追踪仰卧或坐姿受试者的呼吸,且无需任何身体接触。所提出的方法会自动从检测到的面部区域中选择与呼吸相关的区域,并估计呼吸频率。大多数现有方法依赖于来自鼻孔的信号,并且需要特写或高分辨率图像,而我们的方法只需要捕捉面部区域。使用基于深度学习的目标检测模型YOLO v3来检测面部区域。将检测到的面部区域划分为子区域。通过使用新提出的称为呼吸质量指数的指标计算每个分割区域的呼吸可能性,自动选择呼吸区域并估计RR。对七名二十出头的受试者进行了所提出的RR估计方法的评估,每次测量15秒,共进行了四次测量。结果显示平均绝对误差为0.66次/分钟。所提出的方法可作为一种RR估计方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5deb/8271612/9e5f5517fa47/sensors-21-04406-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索