Suppr超能文献

基于图像域和投影域的自我监督学习在超低剂量锥形束 CT 中的对比研究。

A Comparative Study between Image- and Projection-Domain Self-Supervised Learning for Ultra Low-Dose CBCT.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2076-2079. doi: 10.1109/EMBC48229.2022.9871947.

Abstract

We compare image domain and projection domain denoising approaches with self-supervised learning for ultra low-dose cone-beam CT (CBCT), where number of detected x-ray photons is significantly low. For image-domain self-supervised denoising, we first reconstruct CBCT images with the standard filtered backprojection. For model training, we use blind-spot filtering to partially blind images and recover the blind spots. For projection-domain self-supervised denoising, we regard the post-log projections as training examples of convolutional neural network. From experimental results with various low-dose CBCT settings, the projection-domain denoiser outperforms the image-domain denoiser both in image quality and accuracy for ultra low-dose CBCT.

摘要

我们比较了图像域和投影域去噪方法与基于自监督学习的超低剂量锥形束 CT(CBCT)去噪方法,在超低剂量 CBCT 中,检测到的 X 射线光子数量明显较低。对于图像域自监督去噪,我们首先使用标准滤波反投影重建 CBCT 图像。对于模型训练,我们使用盲点滤波对图像进行部分盲处理,并恢复盲点。对于投影域自监督去噪,我们将对数后投影视为卷积神经网络的训练示例。通过各种低剂量 CBCT 设置的实验结果,在超低剂量 CBCT 的图像质量和准确性方面,投影域去噪器均优于图像域去噪器。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验