Suppr超能文献

基于投影数据的自我监督去噪在低剂量锥形束 CT 中的应用。

Self-supervised denoising of projection data for low-dose cone-beam CT.

机构信息

Bionics Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea.

Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea.

出版信息

Med Phys. 2023 Oct;50(10):6319-6333. doi: 10.1002/mp.16421. Epub 2023 Apr 20.

Abstract

BACKGROUND

Convolutional neural networks (CNNs) have shown promising results in image denoising tasks. While most existing CNN-based methods depend on supervised learning by directly mapping noisy inputs to clean targets, high-quality references are often unavailable for interventional radiology such as cone-beam computed tomography (CBCT).

PURPOSE

In this paper, we propose a novel self-supervised learning method that reduces noise in projections acquired by ordinary CBCT scans.

METHODS

With a network that partially blinds input, we are able to train the denoising model by mapping the partially blinded projections to the original projections. Additionally, we incorporate noise-to-noise learning into the self-supervised learning by mapping the adjacent projections to the original projections. With standard image reconstruction methods such as FDK-type algorithms, we can reconstruct high-quality CBCT images from the projections denoised by our projection-domain denoising method.

RESULTS

In the head phantom study, we measure peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) values of the proposed method along with the other denoising methods and uncorrected low-dose CBCT data for a quantitative comparison both in projection and image domains. The PSNR and SSIM values of our self-supervised denoising approach are 27.08 and 0.839, whereas those of uncorrected CBCT images are 15.68 and 0.103, respectively. In the retrospective study, we assess the quality of interventional patient CBCT images to evaluate the projection-domain and image-domain denoising methods. Both qualitative and quantitative results indicate that our approach can effectively produce high-quality CBCT images with low-dose projections in the absence of duplicate clean or noisy references.

CONCLUSIONS

Our self-supervised learning strategy is capable of restoring anatomical information while efficiently removing noise in CBCT projection data.

摘要

背景

卷积神经网络(CNN)在图像去噪任务中取得了有前景的结果。虽然大多数现有的基于 CNN 的方法依赖于通过直接将噪声输入映射到干净的目标来进行监督学习,但对于介入放射学(例如锥形束 CT)等领域,高质量的参考图像往往不可用。

目的

本文提出了一种新的基于自监督学习的方法,可以减少普通锥形束 CT(CBCT)扫描获得的投影中的噪声。

方法

我们使用部分遮挡输入的网络,通过将部分遮挡的投影映射到原始投影来训练去噪模型。此外,我们通过将相邻的投影映射到原始投影,将噪声到噪声学习纳入自监督学习中。使用标准的图像重建方法(如 FDK 算法),我们可以从我们的投影域去噪方法去噪后的投影重建高质量的 CBCT 图像。

结果

在头部体模研究中,我们在投影域和图像域中对提出的方法与其他去噪方法和未经校正的低剂量 CBCT 数据进行了定量比较,测量了峰值信噪比(PSNR)和结构相似性指数度量(SSIM)值。我们的自监督去噪方法的 PSNR 和 SSIM 值分别为 27.08 和 0.839,而未经校正的 CBCT 图像的 PSNR 和 SSIM 值分别为 15.68 和 0.103。在回顾性研究中,我们评估了介入患者 CBCT 图像的质量,以评估投影域和图像域去噪方法。定性和定量结果均表明,在没有重复的干净或噪声参考的情况下,我们的方法可以有效地用低剂量投影生成高质量的 CBCT 图像。

结论

我们的自监督学习策略能够在有效去除 CBCT 投影数据中噪声的同时恢复解剖学信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验