Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:5035-5038. doi: 10.1109/EMBC48229.2022.9871673.
Semantic segmentation of surgery scenarios is a fundamental task for computer-aided surgery systems. Precise segmentation of surgical instruments and anatomies contributes to capturing accurate spatial information for tracking. However, uneven reflection and class imbalance lead the segmentation in cataract surgery to a challenging task. To desirably conduct segmentation, a network with multi-view decoders (MVD-Net) is proposed to present a generalizable segmentation for cataract surgery. Two discrepant decoders are implemented to achieve multi-view learning with the backbone of U-Net. The experiment is carried out on the Cataract Dataset for Image Segmentation (CaDIS). The ablation study verifies the effectiveness of the proposed modules in MVD-Net, and superior performance is provided by MVD-Net in the comparison with the state-of-the-art methods. The source code will be publicly released.
手术场景的语义分割是计算机辅助手术系统的基本任务。手术器械和解剖结构的精确分割有助于捕获跟踪的准确空间信息。然而,不均匀的反射和类不平衡使得白内障手术的分割成为一项具有挑战性的任务。为了进行理想的分割,提出了具有多视图解码器(MVD-Net)的网络,以提供白内障手术的通用分割。实现了两个不同的解码器,以在 U-Net 的主干上实现多视图学习。该实验在白内障图像分割数据集(CaDIS)上进行。消融研究验证了 MVD-Net 中提出模块的有效性,并且与最先进的方法相比,MVD-Net 提供了更好的性能。源代码将公开发布。